Как изменить номинал автоматического выключателя


Переделка автоматического выключателя

 

Реалии современной жизни в Российской Федерации таковы, что в энергосистеме страны еще очень много оборудования которое вводилось в эксплуатацию несколько десятков лет назад еще до распада СССР. Поэтому в электроэнергетике применяются стандарты, ориентированные на данное оборудование. С другой стороны, потребление электроэнергии в быту растет с каждым годом, люди стремятся обеспечить себе комфортное существование и приобретают все больше новых электроприборов. Энергоснабжающие организации ограничивают выделяемую потребителю мощность по разным причинам рассматривать которые мы не будем. В каких-то случаях допускается официальное выделение дополнительной мощности в каких-то нет, но даже когда это возможно, оформление требует существенных затрат и времени. Результатом же, как правило, является банальная замена автомата на более высокий номинал. На фоне постоянно снижающихся доходов населения более привлекательным решением является замена вводного автомата на переделанный автомат большей мощности. На корпусе такого автомата указан разрешенный ток, например, 16А, а внутри установлен механизм от более мощного автомата. Установка перепакованного автомата не требует никаких согласований, и не приводит к хищению электроэнергии. Вы оплачиваете столько, сколько потребляете, но перестаете испытывать проблемы с постоянными отключениями электричества из-за превышения разрешенной мощности. Выявить такой автомат можно только произведя его демонтаж и прогрузив его на специальном оборудовании, которым как правило местные электрики не располагают. Вызов же электроизмерительной лаборатории стоит немалых денег и у обслуживающей организации должны быть веские основания для этого. В случае же если все-таки выявлено, что Ваш вводной автомат не соответствует требованиям договора об электроснабжении, Вы получаете предписание на замену вводного автомата, штрафных санкций за это не предусмотрено.

Переделанные автоматические выключатели бывают двух типов перепакованные и перерисованные.

В нашем интернет магазине мы предлагаем только перепакованные автоматы. Это связано с тем, что единственным плюсом перерисованных автоматов является то, что они собраны на заводе. Но на заводах сборкой автоматов занимаются обычные люди и поэтому какой-то процент брака бывает у всех производителей. Конечно у автоматов премиум сегмента таких как ABB, Legrand, этот процент крайне низок, это связано с тем что корпуса этих автоматов изготавливаются из высококачественного негорючего ABS пластика, а механизм на автоматических станках с высокой степенью точности, детали механизма идеально подходят друг к другу и размещаются в корпусе автомата. Но следует отметить что даже автоматы бюджетных брендов таких как IEK, TDM, EKF, DEKraft в последнее время имеют достаточно высокое качество исполнения и эксплуатационные свойства.

На корпусе автоматического выключателя маркировка, содержащая информацию о номинальном токе автомата размещена как, правило не только на лицевой панели, но и на боковых и задней поверхностях. Причем способы этой маркировки, как правило имеют разные технологии нанесения. Качественно воспроизвести заводскую маркировку со всех сторон выключателя очень сложный и долгий процесс, необходимо удалить старую маркировку, подобрать шрифты надписей, воспроизвести логотипы и штрих коды производителя. При этом автомат должен выглядеть не как перекрашенный, а как выполненный заводским способом, иначе любой квалифицированный электрик невооруженным глазом определит несоответствие. Также никто не даст Вам гарантию, что использованная при перерисовке краска через два три года будет выглядеть также как на момент покупки. Некачественная краска теряет свои свойства со временем, выгорает на солнце, отслаивается, блекнет от воздействия влажности или температуры.

Пример перерисованного автомата, слева оригинал, справа перерисованные автоматы.

Перепакованный автомат не имеет подобных недостатков. Он собирается из двух автоматов, от одного берется корпус, на котором указан необходимый Вам номинал, от второго механизм на больший ток. Конечно Вас может смутить вмешательство в механизм автоматического выключателя, но при использовании специальных инструментов и определенного навыка собрать автоматический выключатель не представляет больших проблем. Гораздо сложнее сохранить внешний вид автомата, он не должен иметь следов вскрытия и быть собран тем же способом как на заводе. Наши специалисты имеют необходимые навыки, для того чтобы аккуратно разобрать корпус автоматического выключателя, не оставив следов вскрытия. Собрать же автомат не представляет сложности, при наличии специального оборудования и качественных комплектующих. Наши специалисты собирают автоматы тем же способом, которым он собирается на заводе, Корпус проклепывается заводскими заклепками, все необходимые перемычки обеспечивающие одновременное отключение всех полюсов также устанавливаются на свои места. В результате Вы получаете перепакованный автомат с увеличенным номиналом в полностью заводском корпусе, на котором присутствуют все необходимые маркировки, выполненные заводом производителем. На все переделанные автоматические выключатели действует гарантия на работу по перепаковке – один год.

 

Какие рейтинги у автоматического выключателя? - Типы номиналов автоматического выключателя

Номинальные характеристики автоматического выключателя указаны с учетом выполняемых им функций. Для получения полной спецификации стандартные характеристики и различные испытания переключателей и автоматических выключателей можно проконсультироваться. Помимо нормальной работы автоматических выключателей, автоматический выключатель должен выполнять следующие три основных функции в условиях короткого замыкания.

  • Способен вывести из строя неисправный участок системы.Это называется отключающей способностью автоматического выключателя.
  • Автоматический выключатель должен обеспечивать замыкание цепи при наибольшем несимметричном токе в волне тока. Это относится к включению мощности автоматического выключателя.
  • Он должен быть способен безопасно переносить неисправность в течение короткого времени, пока другой выключатель устраняет неисправность. Это относится к кратковременной способности автоматического выключателя.

В дополнение к вышеуказанному номиналу автоматические выключатели должны быть указаны в единицах

  1. Количество полюсов
  2. Номинальное напряжение
  3. Номинальный ток
  4. Номинальная частота
  5. Рабочее напряжение

Эти условия подробно описаны ниже.

Номинальное напряжение - Максимальное номинальное напряжение автоматического выключателя - это максимальное действующее значение напряжения, превышающее номинальное напряжение, на которое рассчитан автоматический выключатель, и верхние пределы срабатывания. Номинальное напряжение выражается в KVrms и используется между фазными напряжениями для трехфазной цепи.

Номинальный ток - Номинальный нормальный ток автоматического выключателя - это действующее значение тока, с которым автоматический выключатель должен выдерживать постоянную номинальную частоту и номинальное напряжение при определенных условиях.

Номинальная частота - Номинальная частота автоматического выключателя - это частота, на которой он рассчитан на работу. Стандартная частота 50 Гц

Рабочий режим - Рабочий режим автоматического выключателя состоит из предписанного количества единичных операций с установленными интервалами. Последовательность операций относится к размыканию и замыканию контактов выключателя.

Размыкающий контакт - Термины, выражающие наибольшее значение тока короткого замыкания, которое автоматические выключатели способны отключить при определенных условиях переходного восстанавливающегося напряжения и напряжения промышленной частоты.Выражается в KA RMS при разъединении контактов. Отключающие способности делятся на два типа.

  • Симметричная отключающая способность выключателя
  • Несимметричная отключающая способность автоматического выключателя.

Включающая способность - Всегда существует вероятность включения автоматического выключателя в условиях короткого замыкания. Включающая способность автоматического выключателя - это его способность выдерживать воздействие электромагнитных сил, которые прямо пропорциональны квадрату пикового значения тока включения автоматического выключателя.

Включающий ток автоматического выключателя при замыкании на короткое замыкание - это пиковое значение максимальной волны тока (включая составляющую постоянного тока) в первом цикле тока после замыкания цепи автоматическим выключателем.

Ток короткого замыкания - Ток короткого замыкания автоматического выключателя - это среднеквадратичное значение тока, которое выключатель может выдерживать в полностью замкнутом состоянии без повреждений в течение указанного интервала времени при заданных условиях.Обычно это выражается в терминах КА за 1 или 4 секунды. Эти характеристики основаны на тепловом ограничении.

Выключатель низкого напряжения

не имеет такого тока короткого замыкания, потому что он обычно оборудован последовательными расцепителями перегрузки прямого действия.

.

Общие сведения о рейтингах неисправностей автоматических выключателей низкого напряжения


Schneider Electric
NT MasterPact Circuit Breaker
Я думаю, что этот пост будет полезен некоторым из наших читателей. Хотя стандарт МЭК на низковольтные автоматические выключатели [IEC 60947-2, Низковольтные распределительные устройства и устройства управления - Часть 2: Автоматические выключатели] существует уже много лет, удивительно, как часто неправильно понимаются рейтинги неисправностей. Надеюсь, нам удастся устранить некоторые недоразумения.

Основные параметры

Для ясности, мы говорим только о номинальных токах (не номинальном токе). В этом случае, вероятно, проще всего начать с определения соответствующих номиналов согласно IEC:

I cu - предельная отключающая способность при коротком замыкании
отключающая способность, для которой выполняются предписанные условия в соответствии с указанной последовательностью испытаний. не включает способность автоматического выключателя постоянно выдерживать свой номинальный ток

I cs - рабочая отключающая способность при коротком замыкании
отключающая способность, для которой предписанные условия в соответствии с указанной последовательностью испытаний включают способность автоматический выключатель для непрерывной подачи номинального тока

I cw - номинальный выдерживаемый кратковременный ток
Номинальный выдерживаемый кратковременный ток автоматического выключателя - это значение выдерживаемого короткого замыкания
присвоенного тока

I см - отключающая (включающая) способность при коротком замыкании
отключающая (или включающая) способность, для которой предписанные условия включают короткое замыкание

Что все это означает?

Хотя определения довольно просты, возможно, стоит немного обсудить их.

I cu на самом деле является максимальной перспективной неисправностью, которую может устранить автоматический выключатель (при этом ток повреждения выражается как действующее значение для переменного тока). Это подтверждается испытаниями в соответствии со стандартом и применимо при определенных электрических и окружающих условиях. Если эти условия изменятся, возможно, потребуется снизить номинальные характеристики автоматического выключателя. После устранения неисправности автоматический выключатель не должен оставаться в рабочем состоянии и может быть опасен в эксплуатации.Этот момент особенно важен для автоматических выключателей, когда I cs ниже, чем I cu .

Разница между I cu и I cs

При испытании на соответствие стандарту автоматические выключатели проходят следующие испытания:

I cu подвергается последовательности O-t-CO. Затем выключатель сертифицируется как безопасный с помощью простого диэлектрического испытания.

I cs подчиняется последовательности O-t-CO-t-CO.Затем выключатель подвергается испытаниям на диэлектрическую прочность и превышение температуры.

O - операция отключения
CO - операция включения с последующей операцией отключения
t - интервал времени (как можно короче, но минимум 3 минут)

Испытания проводятся при указанном токе повреждения.

I cs - это максимальный ток перспективного короткого замыкания, который автоматический выключатель может отключить и при этом оставаться в рабочем состоянии. Стандарт допускает небольшую сварку контактов, поэтому после серьезной неисправности все равно будет необходимо проверить выключатель. При указании в процентах от I cs стандарт предлагает диапазоны 25%, 50%, 75% и 100%.

I cw - расчетная устойчивость к отказам (действующее значение для переменного тока). Автоматические выключатели могут быть неисправны, для устранения которых они не предназначены.Не устраняя эти повреждения, выключатель все равно должен выдерживать тепловые и механические нагрузки, вызываемые током повреждения. Чем дольше присутствует неисправность, тем сильнее накапливаются эффекты, и I cw всегда имеет связанный с ней элемент времени (т.е. 50 кА в течение 1 секунды). В стандарте указаны предпочтительные временные диапазоны 0,05, 0,1, 0,25, 0,5 и 1 секунда (хотя на практике также часто используются 3 секунды).

I см - это пиковый ток, который автоматический выключатель может безопасно выключить или включить.Он выражается как максимальный перспективный пиковый ток при номинальном напряжении, частоте и коэффициенте мощности и всегда превышает I cu . С точки зрения безопасности это особенно важно, поскольку это будет основным механизмом защиты оператора, если автоматический выключатель будет включен до отказа.

Все номинальные значения получены при определенных электрических и окружающих условиях и проверены с автоматическим выключателем на открытом воздухе. Как только выключатель помещается в какую-либо панель или шкаф, номинальные параметры меняются, и их необходимо повторно оценить в рамках тестирования сборки.

Применение рейтингов

В завершение поста короткое обсуждение применения рейтингов при выборе автоматического выключателя.

Теперь должно быть очевидно, что при выборе правильного выключателя необходимо учитывать все параметры неисправности. Я думаю, что многие люди, читающие это, видели такие пункты спецификаций, как «автоматические выключатели должны быть рассчитаны на 50 кА в течение 3 секунд», без каких-либо других подробностей. Когда я вижу подобные утверждения, мое первое впечатление (правильное или ошибочное) заключается в том, что я читаю плохую спецификацию.Я бы посоветовал каждому быть конкретным в своей спецификации того, что им требуется, и адресовать I cu , I cs , I cw и I cm как часть спецификации.

Я также заметил, что в целом для большинства крупных производителей большинство их диапазонов имеют I cs , равное I cu . Если мне дается прерыватель, которого нет, я сразу же скептически отношусь к качеству устройства. Устройство вполне может быть подходящим для данного применения, но я был бы более внимателен к оценке автоматического выключателя.Я всегда указываю, что I cs должен соответствовать I cu - на мой взгляд, в чем смысл автоматического выключателя, если его нельзя повторно использовать после отключения.

Еще нужно иметь в виду, что номинальные значения зависят от напряжения. Для низкого напряжения мы говорим от 1000 В до нуля. Чем ниже напряжение, тем выше номинал (например, выключатель Schneider NW12 h3 имеет I cu = 100 кА при 415 В, и этот показатель падает до 85 кА при 525 В).I cw также зависит от времени (чем дольше неисправность, тем ниже будет рейтинг). Часто I cm больше, чем I cu или I cs - убедитесь, что вы смотрите на правильные цифры, и если вас интересует I cu , это должно быть I cu , вам показывают и не я см .

В качестве последнего совета - всегда обращайтесь к каталогам производителей и техническим характеристикам. Производители выпускают целый ряд устройств, и вам необходимо выбрать подходящее для вашего приложения.Нет смысла платить за более высокий рейтинг, если он вам не нужен. В то же время компромисс с номинальными характеристиками ради более дешевого автоматического выключателя ставит под угрозу безопасность и надежность работы.

.

Основные характеристики выключателя

Основные характеристики автоматического выключателя:

  • Его номинальное напряжение Ue
  • Его номинальный ток In
  • Диапазон регулировки уровня тока срабатывания для защиты от перегрузки (Ir [1] или Irth [1] ) и для защиты от короткого замыкания (Im) [1]
  • Его номинальный ток отключения при коротком замыкании (Icu для промышленных выключателей; Icn для выключателей бытового типа).

Номинальное рабочее напряжение (Ue)

Это напряжение, при котором автоматический выключатель рассчитан на работу в нормальных (невозмущенных) условиях.

Автоматическому выключателю также присваиваются другие значения напряжения, соответствующие возмущенным условиям, как указано в разделе «Другие характеристики автоматического выключателя».

Номинальный ток (In)

Это максимальное значение тока, которое автоматический выключатель, оснащенный указанным реле максимального тока, может выдерживать неопределенное время при температуре окружающей среды, указанной изготовителем, без превышения установленных температурных пределов токоведущих частей.

Пример

Автоматический выключатель, рассчитанный на In = 125 A для температуры окружающей среды 40 ° C, должен быть оборудован соответствующим образом откалиброванным реле максимального тока (настроено на 125 A). Однако тот же автоматический выключатель можно использовать при более высоких значениях температуры окружающей среды, если он соответствующим образом «понижен». Таким образом, автоматический выключатель при температуре окружающей среды 50 ° C может выдерживать только 117 A в течение неограниченного времени или, опять же, только 109 A при 60 ° C, при соблюдении указанного температурного предела.

Таким образом, снижение номинальных параметров автоматического выключателя достигается за счет уменьшения уставки тока отключения его реле перегрузки и соответствующей маркировки выключателя.Использование отключающего устройства электронного типа, разработанного, чтобы выдерживать высокие температуры, позволяет автоматическим выключателям (со сниженными номинальными характеристиками) работать при температуре окружающей среды 60 ° C (или даже 70 ° C).

Примечание. In для автоматических выключателей (в IEC 60947-2) обычно равно Iu для распределительного устройства, Iu - это номинальный непрерывный ток.

Типоразмер рамы

Автоматическому выключателю, который может быть оснащен расцепителями максимального тока с различными диапазонами настройки уровня тока, назначается номинал, который соответствует максимальному устройству отключения с настройкой уровня тока, которое может быть установлено.

Пример

Автоматический выключатель Compact NSX630N может быть оснащен 11 электронными расцепителями от 150 до 630 А. Номинальный ток автоматического выключателя составляет 630 А.

Уставка тока срабатывания реле перегрузки (Irth или Ir)

Помимо небольших автоматических выключателей, которые очень легко заменяются, промышленные автоматические выключатели оснащены съемными, т. Е. Заменяемыми реле максимального тока. Более того, чтобы адаптировать автоматический выключатель к требованиям цепи, которую он контролирует, и избежать необходимости прокладки кабелей слишком большого размера, реле отключения обычно регулируются.Уставка тока срабатывания Ir или Irth (обычно используются оба обозначения) - это ток, выше которого сработает автоматический выключатель. Он также представляет собой максимальный ток, который автоматический выключатель может выдерживать без отключения. Это значение должно быть больше максимального тока нагрузки IB, но меньше максимально допустимого тока в цепи Iz (см. Главу «Размеры и защита проводов»).

Реле теплового срабатывания обычно регулируются в пределах от 0,7 до 1,0 от In, но когда для этого используются электронные устройства, диапазон регулировки больше; обычно 0.4 к 1 разу В.

Пример

(см. рис. h37)

Выключатель NSX630N, оборудованный реле максимального тока Micrologic 6.3E на 400 А, установленным на 0,9, будет иметь уставку тока отключения:

Ir = 400 x 0,9 = 360 А

Примечание: Для автоматических выключателей, оборудованных нерегулируемыми реле максимального тока, Ir = In. Пример: для автоматического выключателя iC60N на 20 А,

Ir = In = 20 А.

Рис. H37 - Пример автоматического выключателя Compact NSX630N с номиналом 400 А от Micrologic, настроенным на 0.9, чтобы получить Ir = 360 A

Уставка тока срабатывания реле короткого замыкания (Im)

Реле отключения при коротком замыкании (мгновенного действия или с небольшой выдержкой времени) предназначены для быстрого отключения выключателя при возникновении высоких значений тока повреждения. Их порог срабатывания Im равен:

  • Либо фиксируется стандартами для отечественных выключателей, например IEC 60898 или
  • Указано производителем для автоматических выключателей промышленного типа в соответствии с соответствующими стандартами, в частности, IEC 60947-2.

Для последних автоматических выключателей существует большое количество отключающих устройств, которые позволяют пользователю адаптировать защитные характеристики автоматического выключателя к конкретным требованиям нагрузки (см. Рис. h38, Рис. h39 и Рис. h40).

Рис. H38 - Диапазоны тока отключения устройств защиты от перегрузки и короткого замыкания для выключателей низкого напряжения

Тип реле защиты Защита от перегрузки
Защита от короткого замыкания
Бытовые выключатели IEC 60898 Термомагнитный Ir = In Низкое значение
тип B
3 In ≤ Im ≤ 5 In
Стандартная настройка
тип C
5 In ≤ Im ≤ 10 In
Цепь высокой уставки
тип D
10 In ≤ Im ≤ 20 In [a]
Модульные промышленные автоматические выключатели [b] Термомагнитный Ir = In
фиксированный
Низкая настройка
тип B или Z
3.2 In ≤ фиксированный ≤ 4,8 дюйма
Стандартная настройка
тип C
7 In ≤ фиксированный ≤ 10 In
Высокая уставка
тип D или K
10 In ≤ фиксированная ≤ 14 In
Промышленные выключатели [b]

IEC 60947-2

Термомагнитный Ir = фиксированный Фиксированное: Im = от 7 до 10 дюймов
Регулируемый:
0,7 In ≤ Ir ≤ In
Регулируемый:
  • Низкое значение: от 2 до 5 дюймов
  • Стандартная настройка: от 5 до 10 дюймов
Электронный Длительная задержка
0. 1 2 Для промышленного использования стандарты IEC не определяют значения. Вышеуказанные значения даны только как общеупотребительные.

Рис. H39 - Кривая отключения термомагнитного выключателя

Ir : Уставка тока срабатывания реле перегрузки (тепловая или с большой задержкой)
Im : Уставка тока срабатывания реле короткого замыкания (магнитная или короткая задержка)
Ii : Мгновенное срабатывание реле короткого замыкания- текущая настройка.
Icu : Отключающая способность

Рис. H40 - Кривая отключения автоматического выключателя с усовершенствованным электронным расцепителем

Автоматический выключатель с изоляцией

Автоматический выключатель пригоден для разъединения цепи, если он соответствует всем условиям, предписанным для разъединителя (при его номинальном напряжении) в соответствующем стандарте. В таком случае он называется выключателем-разъединителем и маркируется на его лицевой стороне символом

К этой категории относятся все распределительные устройства Acti 9, Compact NSX и Masterpact LV линейки Schneider Electric.

Номинальная отключающая способность при коротком замыкании (Icu или Icn)

Отключающая способность низковольтного выключателя по току короткого замыкания связана (приблизительно) с cos φ петли тока короткого замыкания. Стандартные значения для этих отношений установлены в некоторых стандартах.

Номинальный ток отключения при коротком замыкании выключателя - это наибольшее (ожидаемое) значение тока, которое выключатель способен отключать без повреждения. Величина тока, указанная в стандартах, представляет собой действующее значение переменной составляющей тока повреждения, т.е.е. переходная составляющая постоянного тока (которая всегда присутствует в наихудшем случае короткого замыкания) предполагается равной нулю для расчета стандартизованного значения. Это номинальное значение (Icu) для промышленных выключателей и (Icn) для выключателей бытового типа обычно выражается в кА, действующее значение.

Icu (номинальная предельная отключающая способность sc) и Ics (номинальная рабочая отключающая способность sc) определены в IEC 60947-2 вместе с таблицей, связывающей Ics с Icu для различных категорий использования A (мгновенное отключение) и B (с выдержкой времени). отключение), как описано в разделе Другие характеристики автоматического выключателя.

Испытания для подтверждения номинального напряжения Отключающая способность автоматических выключателей регулируется стандартами и включает:

  • Рабочие последовательности, состоящие из последовательности операций, т.е. замыкание и размыкание при коротком замыкании
  • Сдвиг фаз тока и напряжения. Когда ток находится в фазе с напряжением питания (cosφ для цепи = 1), прерывание тока легче, чем при любом другом коэффициенте мощности. Прерывание тока при малых значениях запаздывания cosφ значительно труднее; схема с нулевым коэффициентом мощности (теоретически) является наиболее обременительным случаем.

На практике все токи короткого замыкания в энергосистеме имеют (более или менее) отстающие коэффициенты мощности, и стандарты основаны на значениях, которые обычно считаются типичными для большинства энергосистем. Как правило, чем выше уровень тока повреждения (при заданном напряжении), тем ниже коэффициент мощности петли тока повреждения, например, вблизи генераторов или больших трансформаторов.

На рисунке h41 ниже, взятом из IEC 60947-2, приведены стандартизованные значения cos φ для промышленных автоматических выключателей в соответствии с их номинальным значением Icu.

  • После последовательности включения - выдержки времени - замыкания / размыкания для проверки емкости Icu выключателя проводятся дальнейшие испытания, чтобы убедиться, что:
    • Устойчивость к диэлектрику
    • Отключение (изоляция) исполнения и
    • Тест не повлиял на правильную работу защиты от перегрузки.

Рис. H41 - Icu, связанное с коэффициентом мощности (cosφ) цепи тока короткого замыкания (IEC 60947-2)

Icu cosφ
6 кА 0. 1 2 3 Значения уставки уровня тока, которые относятся к токовым тепловым и «мгновенным» магнитным расцепителям для защиты от перегрузки и короткого замыкания. .

Согласование автоматических выключателей - Руководство по электрическому монтажу

Каскадная (или резервная защита)

В методе «каскадирования» используются свойства токоограничивающих автоматических выключателей, позволяющих устанавливать все расположенные ниже распределительные устройства, кабели и другие компоненты схемы со значительно более низкими характеристиками, чем было бы необходимо, тем самым упрощая и снижая стоимость установки.

Определение каскадной техники

Ограничивая пиковое значение проходящего через него тока короткого замыкания, токоограничивающий выключатель позволяет использовать во всех цепях после его расположения распределительное устройство и компоненты цепей с гораздо более низкой отключающей способностью при коротком замыкании, а также тепловые и электромеханические. выдерживать возможности, которые в противном случае были бы необходимы.Уменьшение физических размеров и более низкие требования к производительности приводят к значительной экономии и упрощению монтажных работ. Можно отметить, что, хотя токоограничивающий выключатель оказывает влияние на цепи ниже по потоку, (очевидно) увеличивая полное сопротивление источника в условиях короткого замыкания, он не имеет такого эффекта ни в каких других условиях; например, при запуске большого двигателя (где очень желательно низкое сопротивление источника). Особенно интересна линейка токоограничивающих автоматических выключателей Compact NSX с мощными ограничивающими характеристиками.

Условия реализации

Как правило, необходимы лабораторные испытания, чтобы гарантировать, что условия реализации, требуемые национальными стандартами, выполнены, и изготовителем должны быть предоставлены совместимые комбинации распределительных устройств.

Большинство национальных стандартов допускают каскадную технику при условии, что количество энергии, «пропускаемой» ограничивающим выключателем, меньше энергии, которую все расположенные ниже выключатели и компоненты могут выдержать без повреждений.

На практике это можно проверить для выключателей только тестами, проведенными в лаборатории. Такие испытания проводят производители, которые предоставляют информацию в виде таблиц, чтобы пользователи могли уверенно спроектировать каскадную схему на основе комбинации рекомендуемых типов выключателей. В качестве примера Рисунок h57 показывает возможности каскадирования автоматических выключателей типов iC60, DT40N, C120 и NG125 при установке после токоограничивающих выключателей Compact NSX 250 N, H или L для 230/400 В или 240/415 V 3-х фазная установка.

Рис. H57 - Пример возможности каскадного подключения в трехфазной сети 230/400 В или 240/415 В

CB восходящего потока NSX250
B F N H S л
Icu (кА) 25 36 50 70 100 150
Нисходящий CB
Тип Рейтинг (A) Icu (кА) Усиленная отключающая способность (кА)
iDPN [a] 1-40 6 10 10 10 10 10 10
iDPN N [a] 1–16 10 20 20 20 20 20 20
25-40 10 16 16 16 16 16 16
iC60N 0,5-40 10 20 25 30 30 30 30
50-63 10 20 25 25 25 25 25
iC60H 0,5-40 15 25 30 30 30 30 30
50-63 15 25 25 25 25 25 25
iC60L 0,5-25 25 25 30 30 30 30 30
32-40 20 25 30 30 30 30 30
50-63 15 25 25 25 25 25 25
C120N 63-125 10 25 25 25 25 25 25
C120H 63-125 15 25 25 25 25 25 25
NG125N 1-125 25 36 36 36 50 70
NG125H 1-125 36 40 50 70 100
NG125L 1-80 50 50 70 100 150
  1. ^ 1 2 230 В фаза на нейтраль

Преимущества каскадирования

Ограничение тока выгодно для всех нижестоящих цепей, которые управляются соответствующим токоограничивающим выключателем.

Принцип не является ограничивающим, т. Е. Токоограничивающие выключатели могут быть установлены в любой точке установки, где в противном случае цепи ниже по потоку были бы неадекватно рассчитаны.

Результат:

  • Упрощенный расчет тока короткого замыкания
  • Упрощение, то есть более широкий выбор распределительных устройств и приборов, расположенных ниже по потоку
  • Использование более легких распределительных устройств и приборов с, как следствие, более низкой стоимостью
  • Экономия места, поскольку легкое оборудование обычно имеет меньший объем

Принципы избирательности

Селективность важна для обеспечения бесперебойного питания и быстрой локализации неисправностей.

Избирательность достигается за счет устройств защиты от перегрузки по току и замыкания на землю, если состояние отказа, возникающее в любой точке установки, устраняется защитным устройством, расположенным непосредственно перед местом повреждения, в то время как все другие защитные устройства остаются неизменными (см. Рисунок h58 ).

Рис. H58 - Принцип селективности

Селективность требуется для установки, питающей критические нагрузки, когда одна неисправность в одной цепи не должна вызывать прерывание питания других цепей.В серии IEC 60364 это обязательно для установки, обеспечивающей услуги безопасности (IEC60364-5-56 2009 560.7.4). Селективность также может требоваться некоторыми местными правилами или для некоторых специальных приложений, например:

  • Медицинский пункт
  • Морской
  • Высотное здание

Селективность настоятельно рекомендуется там, где бесперебойность электроснабжения критична из-за характера нагрузок.

  • Дата-центр
  • Инфраструктура (туннель, аэропорт…)
  • Критический процесс

С точки зрения монтажа: Селективность достигается, когда максимальный ток короткого замыкания в точке установки ниже предела селективности автоматических выключателей, питающих эту точку установки.

Селективность должна проверяться для всех цепей, питаемых от одного источника, и для всех типов неисправностей:

  • Перегрузка
  • Короткое замыкание
  • Замыкание на землю

Когда система может питаться от разных источников (например, сеть или генераторная установка), в обоих случаях необходимо проверять избирательность.

Селективность между двумя автоматическими выключателями может быть

  • Всего: до отключающей способности автоматического выключателя
  • Частично: до указанного значения в соответствии с характеристиками автоматических выключателей Рисунок h59, H50 и H51

Предлагаются различные решения для достижения селективности на основе:

  • Текущий
  • Время
  • Энергия
  • Логика

Рис.h59 - Полная и частичная избирательность

Рис. H50 - Полная селективность между выключателями A и B

Рис. H51 - Частичная селективность между выключателями A и B

Селективность по току

см. (a) из Рисунок H52

Этот метод реализуется путем установки последовательных пороговых значений срабатывания на ступенчатых уровнях от цепей ниже по потоку (более низкие значения) к источнику (более высокие значения).

Избирательность может быть полной или частичной, в зависимости от конкретных условий, как указано выше.

Селективность по времени

см. (b) из Рисунок H52

Этот метод реализуется путем настройки отключающих устройств с задержкой по времени таким образом, чтобы реле, расположенные ниже по потоку, имели самое короткое время срабатывания с постепенно увеличивающимися задержками по направлению к источнику. В показанной двухуровневой схеме автоматический выключатель A, расположенный выше по потоку, имеет задержку, достаточную для обеспечения полной селективности с B (например, Masterpact с электронным расцепителем).

Автоматические выключатели категории селективности B спроектированы для селективности на основе времени, предел селективности будет кратковременным выдерживаемым значением на входе (Icw)

Избирательность на основе комбинации двух предыдущих методов

см. (c) из Рисунок H52

Временная задержка, добавленная к схеме текущего уровня, может улучшить общие характеристики селективности.

У вышестоящего выключателя есть два порога магнитного срабатывания:

  • Im A: магнитное отключение с задержкой или электронное отключение с короткой задержкой
  • Ii: мгновенное отключение

Избирательность полная, если Isc B

Рис. H52 - Селективность по току, Селективность по времени, комбинация обоих

Защита от токов короткого замыкания высокого уровня: селективность на основе уровней энергии дуги

Если кривые зависимости времени от тока наложены, селективность возможна с автоматическим выключателем-ограничителем, если они правильно скоординированы.

Принцип: Когда два автоматических выключателя A и B обнаруживают очень высокий ток короткого замыкания, их контакты размыкаются одновременно. В результате ток сильно ограничен.

  • Очень высокая энергия дуги на уровне B вызывает отключение выключателя B
  • Тогда энергия дуги ограничена на уровне A и недостаточна для отключения A

Рис. H53 - Селективность на основе энергии

Этот подход требует точного согласования уровней ограничения и уровней энергии отключения.Он реализован в линейке Compact NSX (токоограничивающий автоматический выключатель), а также в серии Compact NSX и acti 9. Это единственное решение, обеспечивающее селективность вплоть до высокого тока короткого замыкания с автоматическим выключателем категории селективности A согласно IEC60947-2.

Рис. H54 - Практический пример селективности на нескольких уровнях с автоматическими выключателями Schneider Electric (с электронными расцепителями)

Селективность повышена за счет каскадирования

Каскадирование между 2 устройствами обычно достигается с помощью отключения автоматического выключателя A, расположенного на входе, чтобы помочь выключателю B, расположенному на выходе, отключить ток.По принципу каскадирование противоречит избирательности. Но технология энергоселективности, реализованная в автоматических выключателях Compact NSX, позволяет улучшить отключающую способность выключателей, расположенных ниже по цепи, и сохранить высокую селективность.

Принцип следующий:

  • Следующий ограничительный автоматический выключатель B обнаруживает очень высокий ток короткого замыкания. Отключение происходит очень быстро (<1 мс), а затем ограничивается ток
  • Выключатель A, расположенный выше по цепи, имеет ограниченный ток короткого замыкания по сравнению с его отключающей способностью, но этот ток вызывает отталкивание контактов.В результате напряжение дуги увеличивает ограничение тока. Однако энергии дуги недостаточно для отключения автоматического выключателя. Таким образом, автоматический выключатель A помогает выключателю B отключиться, не срабатывая при этом сам. Предел селективности может быть

выше, чем Icu B, и селективность становится полной при снижении стоимости устройств.

Логическая избирательность или «Блокировка последовательности зон - ZSI»

Возможны схемы селективности, основанные на логических методах, с использованием автоматических выключателей, оборудованных электронными расцепителями, предназначенными для этой цели (Compact, Masterpact) и соединенными с контрольными проводами.

Этот тип селективности может быть достигнут с помощью автоматических выключателей, оснащенных специально разработанными электронными расцепителями (Compact, Masterpact): Logic управляет только функциями кратковременной защиты (Isd, Tsd) и защиты от замыкания на землю (GFP). Избирательность. В частности, функция мгновенной защиты не касается.

Одним из преимуществ этого решения является короткое время отключения независимо от места повреждения с помощью автоматического выключателя категории селективности B.Селективность на основе времени в многоуровневой системе подразумевает длительное время отключения в исходной точке установки.

Настройки автоматических выключателей

  • временная задержка: включение временных задержек необходимо, по крайней мере, для автоматического выключателя, получающего вход ZSI (ΔtD1> время отключения без задержки D2 и ΔtD2> время отключения без задержки D3)
  • Пороговые значения
  • : правила для пороговых значений не применяются, но должно соблюдаться естественное каскадирование номиналов защитного устройства (IcrD1> IcrD2> IcrD3).

Примечание : Этот метод обеспечивает селективность даже с автоматическими выключателями аналогичного номинала.

Принципы

Активация функции логической селективности через передачу информации по контрольному проводу:

  • Вход ZSI:
    • низкий уровень (нет отказов на выходе): функция защиты находится в режиме ожидания без временной задержки,
    • высокий уровень (наличие отказов на выходе): соответствующая функция защиты переходит в состояние временной задержки, установленное на устройстве.
  • ZSI выход:
    • низкий уровень: расцепитель не обнаруживает неисправностей и не отправляет приказы,
    • высокий уровень: расцепитель обнаруживает неисправность и отправляет команду.

Эксплуатация

Контрольный провод соединяет каскадно защитные устройства установки (см. Рисунок H55). При возникновении неисправности каждый автоматический выключатель перед неисправностью (обнаружение неисправности) отправляет команду (выход высокого уровня) и переводит выключатель цепи выше по потоку на установленную задержку времени (вход высокого уровня).Автоматический выключатель, расположенный чуть выше места повреждения, не получает никаких команд (вход низкого уровня) и, таким образом, срабатывает почти мгновенно.

Рис. H55 - Логическая избирательность.

.

Смотрите также