Как на электрических схемах обозначается лампа


Обозначение лампочки на электрической схеме и чертежах

Каждый профессионал должен владеть определенным языком, соответствующим его профессии. В электрике таким языком является графический язык электрических/электронных схем. На этом языке удобнее всего описывать (вернее, отрисовывать) объекты, с которыми электрик работает. Причем как в случае построения каких-то новых сооружений, проведения проводки или целой системы питания или освещения, изготовления электроприборов, так и в случае устранения аварий, улучшения схем или просто подключения новых объектов к уже имеющимся системам.

Электрик должен уметь, например, при беглом взгляде на возникшую где-то проблему увидеть профессиональным оком возможные причины неисправности и свои гипотезы быстро набросать в виде схемы на любом клочке бумаги. И уже тогда решать задачу или объяснять кому-то варианты возможного решения.

Язык схем – это в какой-то мере язык специфических иероглифов, и их знание – просто разновидность грамотности. Во многом обозначения делаются логически понятными, так как часто происходят от рисунков соответствующих обозначаемых объектов или их деталей.

Два вида обозначений на электрических схемах

Графические обозначения должны быть интуитивно понятны с первого взгляда. Но есть множество свойств, которые простым рисуночком передать сложно. Поэтому на всех схемах, где требуется конкретика – а это все схемы, рассчитанные на практическое применение, – условные графические обозначения дополняются буквенными или цифровыми надписями.

То есть, обозначения на схемах можно отнести к:

  1. Графическим.
  2. Знаковым – буквенным или цифровым.

Также стоит выделить обозначения, сводимые в различные таблицы, спецификации, пояснительные тексты, обычно прилагаемые к схемам. Самым главным свойством таких обозначений должна быть однозначность идентификации каждого объекта, отраженного на схеме. Это касается как типа изображенного объекта, например, выключатель, лампочка, стабилизатор, так и конкретного номера на схеме или его электрических, монтажных, физических и других свойств.

При вычерчивании схем сейчас обычно используются компьютерные программы, которые автоматически дают красивую, понятную и удобно размещенную картинку, тем не менее так же, как мы все умеем писать карандашом или ручкой, должны суметь нарисовать и схему – хотя бы в общем виде и в черновом варианте.

И это несмотря на то, что существует множество программ, написанных для формирования и вычерчивания схем.

Графические условные обозначения электрических объектов являются общепринятыми и могут использоваться в схемах, планах и чертежах разного вида: принципиальных схемах, монтажных планах, планах проводки, разводки, и т. д. Эти обозначения, как и разновидности любой графической документации, регламентируются стандартами. Последним из таких стандартов можно назвать ГОСТ МЭК 60617-DB-12M-2015 «Графические символы для схем».

Из всего разнообразия схем, где изображаются электрические элементы, нас интересуют, прежде всего, схемы и условные обозначения на них, касающиеся освещения и осветительных систем. При серьезном профессиональном подходе система освещения строящегося объекта является частью общего проекта, а после окончания строительства и с начала пользования объектом все электрические схемы должны храниться в надежном месте весь период эксплуатации здания. Хотя на практике часто бывает иначе.

Кратко рассмотрим на примере виды графических документов, касающихся электрической части проекта.

План здания (квартиры)

Очень условно, даже схематично на плане изображено расположение комнат, положение проемов и размеры.

План квартиры

Схема осветительной сети

На этой схеме важно как, в каких точках освещать помещение заданной конфигурации.

Схема осветительной сети

Разумеется, подводка энергии к светильникам тоже играет роль при этом, поэтому вполне уместно здесь ее и изобразить. Это несложно сделать в соответствии с разработанными стандартами: ГОСТ 21.608 и ГОСТ 21.614.

Розеточная сеть помещения

Схема размещения розеток органически дополняет схему освещения.

Схема размещения розеток

Как видим, схемы несложные, вполне по силам их вычертить даже в домашних условиях при производстве каких-то работ по созданию и модернизации бытовой электрической сети. Важно уметь в таких схемах ориентироваться.

Схема сети питания

Схема питания дает больше технических сведений, поэтому в ней много буквенно-цифровых обозначений и количественных данных. А данные пространственного расположения уже приведены в трех предыдущих, поэтому на схеме питания сведения заключены в виде схематической однолинейной таблицы.

Схема сети питания

Условные обозначения, которые встретились здесь, на примере этих схем, можно считать чаще всего встречающимися. Их все обычно и знают. Полный же перечень графических обозначений дают ГОСТы, приведенные выше.

Здесь мы тоже их перечислим, их не так много, важно их рассмотреть и понять логику изображения в них различных свойств и деталей.

Графические обозначения на схемах

Так как нас интересуют больше осветительные устройства, лампы и прочие светильники в этом перечне вынесены вперед. Остальное оборудование приведем, но следом за ними.

 

Буквенные обозначения в электрических схемах

Буквенные обозначения – это аббревиатуры, которые по смыслу тоже легко расшифровываются и запоминаются. Все делается в соответствии с ГОСТ 7624-54, можно привести их и здесь.

Буквенные обозначения электронных элементов схем тоже всем известны. Они часто обозначаются латинскими буквами, как сокращение от соответствующих им названий физических величин. Например, R – resistance, электрическое сопротивление.

Ну вот и все, что может понадобиться, чтобы нарисовать или, наоборот, понять схемы электрического питания помещений.

Как работают электрические схемы

Если вы не понимаете, как работают электрические схемы или что люди имеют в виду, тогда они говорят о вольтах и ​​усилителях, надеюсь, я смогу пролить немного света. Я собираюсь сделать этот пост простым введением в электрические схемы для всех, кто не знает, но заинтересован.

Собираюсь сделать сообщение простым и охватить следующее:

  • Основные части электрической цепи (напряжение, ток и сопротивление)
  • Как связаны основные части (знаменитый закон Ома)
  • Мощность в электрической цепи
  • Связываем все вместе несколькими примерами

Работа со схемами

Говоря об электрических цепях, следует учитывать три основных параметра - напряжение, ток и сопротивление.

Напряжение - это движущая сила, заставляющая все работать. Для большинства людей это, вероятно, самая знакомая величина. На изображении ниже показаны различные напряжения.

Ток - это электрический ток в цепи. Например, если вы подключите лампу к розетке, показанной выше, электричество будет проходить по проводам и преобразовываться в тепло и свет в лампе. Чтобы электричество текло, вам нужна некоторая движущая сила - возврат к напряжению, которое является движущей силой.

Часто, пытаясь объяснить напряжение и ток, используется аналогия с водой. Напряжение эквивалентно давлению воды и току потока воды по трубам.

В любой электрической цепи есть сопротивление протеканию тока. Величина сопротивления зависит от того, что подключено в цепи. Чем больше сопротивление в цепи, тем меньше ток. В цепи лампы сопротивление - это величина, достаточная для обеспечения тока, достаточного для того, чтобы лампа светилась - если бы сопротивление было меньше, ток был бы больше и сгорел бы лампу, если бы большего тока было бы недостаточно, чтобы заставить лампу свечение.

Если вы можете понять напряжение, ток и сопротивление, вы сможете понять, как работают электрические цепи.

На рисунке ниже показан нагреватель, подключенный к сетевой розетке. Также показано схематическое представление цепи, показывающей управляющее напряжение, ток и сопротивление потоку электричества, создаваемое нагревателем.

Если вам известны значения двух из этих параметров, вы всегда можете работать со значением третьего.Около 1825 года ученый по имени Георг Ом исследовал эту взаимосвязь и придумал то, что известно как закон Ома. В своих экспериментах он обнаружил, что в цепи напряжение, разделенное на ток, всегда равно постоянной величине - сопротивлению:

.

- Закон Ома; R - сопротивление, V - напряжение, I - ток

Единицей измерения напряжения является Вольт (В), тока - Ампера (А), а для сопротивления - Ом (Ом), названного в честь Георга Ома.

В дополнение к форме уравнения, показанной выше, закон Ома также можно изменить, чтобы найти либо напряжение, либо ток с учетом других параметров:

Если вы все еще со мной, то теперь у вас есть хорошее базовое понимание того, как работают электрические схемы. Чтобы увидеть ситуацию в перспективе, помогут несколько примеров:

Рассмотрим схему нагревателя, показанную выше. Если напряжение в розетке 230 В, а сопротивление нагревателя 53 Ом (что типично для нагревателя мощностью 1 кВт).Тогда ток будет 230/53 = 4,4 А (ампер)

.

В качестве второго примера сопротивление человеческого тела составляет приблизительно 1000 Ом. Если вы случайно коснетесь проводника под напряжением 230 В, ток, протекающий через ваше тело, составит 230/1000 = 0,23 А

.
    • Безопасность: любой ток в теле, превышающий примерно 0,05 А, может привести к серьезным травмам или смертельному исходу. При типичном сопротивлении корпуса 1000 Ом даже напряжение 50 В может вызвать протекание этого тока.При напряжении около 50 В необходимо принять как можно больше мер, чтобы исключить контакт с токоведущими проводниками.

Кое-что о единицах

В приведенных выше примерах получены токи 4,4 и 0,23 А. При работе с электрическими цепями значения напряжения, тока и сопротивления могут варьироваться от миллионов до небольших долей. Этот диапазон чисел от очень большого до очень маленького может затруднить считывание значений.Для облегчения чтения чисел используются префиксы - два общих префикса - kilo (k) и mili (m):

.

- килограмм (k) просто означает 1000 (тысяча). Чтобы преобразовать что-то в килограммы, просто разделите на 1000. Например, 132 000 В можно записать как 132 кВ (киловольт) или 43 000 А как 43 кА.

- мили (м) как бы противоположно килограмму; это сеть 1/1000 (одна тысячная). Чтобы преобразовать в мили, просто умножьте на 1000. Например, 0,23 А будет 230 мА (мили-ампер)

Немного по мощности

Прежде чем резюмировать то, что мы прошли до сих пор, последнее, о чем стоит поговорить, - это мощность.Причина, по которой у нас есть электрические цепи, заключается в том, чтобы выполнять полезную работу для нас. В лампе это должно обеспечивать свет, в обогревателе - чтобы дать нам тепло, а в электромобиле - чтобы нас водить. Электрические цепи передают энергию от электростанции к подключенному оборудованию, чтобы мы могли получить от них эту полезную работу.

Мощность (P) измеряется в ваттах (Вт), и если вы знаете ток и сопротивление цепи, вы можете рассчитать это (поверьте мне в уравнении):

Итак, мощность в любом элементе оборудования - это текущий квадрат, умноженный на его сопротивление, что на самом деле довольно просто.Если вы хотите поиграть с математикой, вы можете объединить это с законом Ома, чтобы выразить это разными способами:

Пример: рассмотрим пример нагревателя выше - сопротивление 53 Ом, и мы рассчитали ток как 4,4 А. Это дает мощность 4,4 2 x 53 = 1026 Вт (или приблизительно 1 кВт).

Резюме

Итак, электрические цепи имеют три взаимосвязанные величины - напряжение, ток и сопротивление.Напряжение - это движущая сила, которая перемещает ток по цепи, позволяя подавать мощность на оборудование. Любой элемент оборудования обеспечивает сопротивление, ограничивающее ток в цепи. Между этими тремя параметрами существует простая взаимосвязь, которая называется законом Ома.

Надеюсь, этот пост помог лучше понять электричество и электрические цепи. Если у вас есть какие-либо комментарии, что-либо или предложения по улучшению публикации, просто добавьте ниже.

.

Что такое электрическая цепь? (с рисунками)

Электрическая цепь - это устройство, которое использует электричество для выполнения определенной задачи, например, для создания вакуума или питания лампы. Схема представляет собой замкнутый контур, состоящий из источника питания, проводов, предохранителя, нагрузки и переключателя. Электричество проходит через цепь и доставляется к объекту, который питает, например, к вакуумному двигателю или лампочке, после чего электричество отправляется обратно к первоначальному источнику; этот возврат электричества позволяет цепи поддерживать электрический ток.Существуют три типа электрических цепей: последовательная цепь, параллельная цепь и последовательно-параллельная цепь; В зависимости от типа цепи, электричество может продолжать течь, если цепь перестает работать. Две концепции, закон Ома и напряжение источника, могут влиять на количество электричества, протекающего через цепь, и, следовательно, на то, насколько хорошо электрическая цепь функционирует.

Техник по ремонту электрических цепей.
Как это работает

Большинство устройств, работающих от электричества, содержат электрическую цепь; при подключении к источнику питания, например к электрической розетке, электричество может проходить через электрическую цепь внутри устройства, а затем возвращаться к исходному источнику питания, чтобы продолжить поток электроэнергии.Другими словами, когда переключатель питания включен, электрическая цепь замыкается, и ток течет от положительного вывода источника питания через провод к нагрузке и, наконец, к отрицательному выводу. Любое устройство, которое потребляет энергию, протекающую по цепи, и преобразует эту энергию в работу, называется нагрузкой. Лампочка - один из примеров нагрузки; он потребляет электричество из цепи и преобразует его в работу - тепло и свет.

Предохранители в блоке предохранителей.
Типы цепей

Последовательная схема является самой простой, потому что у нее есть только один возможный путь, по которому может течь электрический ток; при разрыве электрической цепи ни одно из устройств нагрузки не будет работать. Разница с параллельными цепями состоит в том, что они содержат более одного пути для прохождения электричества, поэтому, если один из путей будет нарушен, другие пути будут продолжать работать.Однако последовательно-параллельная цепь представляет собой комбинацию первых двух: она подключает некоторые нагрузки к последовательной цепи, а другие - к параллельным цепям. При разрыве последовательной цепи ни одна из нагрузок не будет работать, но если одна из параллельных цепей разорвется, эта параллельная цепь и последовательная цепь перестанут работать, а другие параллельные цепи продолжат работу.

Предохранитель - это ключевая часть электрической цепи.
Закон Ома

Многие «законы» применимы к электрическим цепям, но Закон Ома, вероятно, наиболее известен. Закон Ома гласит, что ток электрической цепи прямо пропорционален ее напряжению и обратно пропорционален ее сопротивлению. Так, например, если напряжение увеличивается, ток также увеличивается, а если увеличивается сопротивление, ток уменьшается; обе ситуации напрямую влияют на эффективность электрических цепей.Чтобы понять закон Ома, важно понимать концепции тока, напряжения и сопротивления: ток - это поток электрического заряда, напряжение - это сила, которая движет ток в одном направлении, а сопротивление - это противоположность объекта тому, чтобы иметь ток проходит через него. Формула закона Ома: E = I x R, где E = напряжение в вольтах, I = ток в амперах и R = сопротивление в омах; эту формулу можно использовать для анализа напряжения, тока и сопротивления электрических цепей.

Амперы, вольты, ватты и омы измеряют различные аспекты электричества при его прохождении по цепи.
Напряжение источника

Другое важное понятие, касающееся электрических цепей, напряжение источника относится к величине напряжения, которое вырабатывается источником питания и прикладывается к цепи.Другими словами, напряжение источника зависит от того, сколько электроэнергии будет получать цепь. Напряжение источника зависит от величины сопротивления в электрической цепи; это также может повлиять на величину тока, поскольку на ток обычно влияют как напряжение, так и сопротивление. Однако сопротивление не зависит от напряжения или тока, но может уменьшить как напряжение, так и ток в электрических цепях.

Резисторы - это электрические устройства, управляющие прохождением тока через цепь.Немецкий физик Георг Ом обнаружил, как состав, длина и толщина материала влияют на то, сколько тока будет проходить через него при определенном напряжении. .

Как работают электрические схемы | Основы освещения

Базовые схемы

Электрическая цепь - это непрерывный путь, по которому электрический ток существует и / или может течь. Простая электрическая схема состоит из источника питания, двух токопроводящих проводов (один конец каждого подсоединяется к каждой клемме ячейки) и небольшой лампы для к которым прикреплены свободные концы проводов, идущих от ячейки.

Когда соединения выполнены правильно, цепь «замкнется», и ток пройдет по цепи и зажжет лампу.

Простая электрическая схема

После того, как один из проводов отсоединен от источника питания или в потоке сделан «разрыв», цепь теперь «разомкнута» и лампа больше не будет светиться.

На практике цепи «размыкаются» такими устройствами, как переключатели, предохранители и автоматические выключатели. Две общие схемы классификации бывают последовательными и параллельными.

Элементы последовательной цепи соединены встык; один и тот же ток течет по его частям одну за другой.

Цепи серии

В последовательной цепи ток через каждый из компонентов одинаков, и напряжение на компонентах - это сумма напряжений по каждому компоненту.

Пример последовательной цепи

Параллельные схемы

В параллельной цепи напряжение на каждом из компонентов одинаково, а полный ток представляет собой сумму токов через каждый компонент.

Если два или более компонента подключены параллельно, они имеют одинаковую разность потенциалов ( напряжение) на их концах.Потенциальные различия между компоненты одинаковы по величине и имеют одинаковую полярность. Такое же напряжение применимо ко всем цепям компоненты соединены параллельно.

Если каждая лампочка подключена к аккумулятору в отдельной петле, считается, что лампы параллельны.

Пример параллельной схемы.

Пример схемы

Рассмотрим очень простую схему, состоящую из четырех лампочек и одной на 6 В. аккумулятор.Если провод соединяет батарею с одной лампочкой, второй лампочкой, третьей лампочкой, а затем обратно с батареей в одну непрерывную петлю, говорят, что луковицы включены последовательно. Если три лампочки соединены последовательно, через все их, и падение напряжения на каждой лампочке составляет 1,5 В, и этого может быть недостаточно, чтобы они светились.

Если лампочки соединены параллельно, ток, протекающий через лампочки, объединяется, образуя ток. течет в АКБ, а падение напряжения равно 6.0 В на каждой лампочке, и все они светятся.

В последовательной цепи каждое устройство должно работать, чтобы цепь была замкнутой. Одна лампочка перегорела в последовательной цепи разрывает цепь. В параллельных цепях каждая лампа имеет свою собственную цепь, поэтому все лампы, кроме одной, могут перегореть, и последний по-прежнему будет работать.

.

Электрическая схема - Простая английская Википедия, бесплатная энциклопедия

Электрическая схема - это путь, по которому текут электроны от источника напряжения или тока.

Точка, где эти электроны входят в электрическую цепь, называется «источником» электронов. Точка, в которой электроны покидают электрическую цепь, называется «возвратной» или «землей». Точка выхода называется «возвращением», потому что электроны всегда попадают в источник, когда они завершают свой путь в электрической цепи.

Часть электрической цепи, которая находится между начальной точкой электронов и точкой, где они возвращаются к источнику, называется «нагрузкой» электрической цепи. Нагрузка электрической цепи может быть такой же простой, как нагрузка на бытовые приборы, такие как холодильники, телевизоры или лампы, или более сложной, например, нагрузка на выходе гидроэлектростанции.

В цепях используется два вида электроэнергии: переменный ток (AC) и постоянный ток (DC).Переменный ток часто питает большие приборы и двигатели и вырабатывается электростанциями. Постоянный ток питает автомобили, работающие от батарей, а также другие машины и электронику. Преобразователи могут преобразовывать переменный ток в постоянный и наоборот. Для передачи постоянного тока высокого напряжения используются большие преобразователи.

Экспериментальная электронная схема

В электронных схемах обычно используются источники постоянного тока. Нагрузка электронной схемы может быть такой же простой, как несколько резисторов, конденсаторов и лампы, соединенных вместе, чтобы создать вспышку в камере.Или электронная схема может быть сложной, соединяя тысячи резисторов, конденсаторов и транзисторов. Это может быть интегральная схема, такая как микропроцессор в компьютере.

Резисторы и другие элементы схемы можно подключать последовательно или параллельно. Сопротивление в последовательной цепи - это сумма сопротивлений.

Цепь или электрическая схема - это визуальное отображение электрической цепи. Электрические и электронные схемы могут быть сложными. Чертеж соединений всех компонентов в нагрузке схемы упрощает понимание того, как соединяются компоненты схемы.Чертежи электронных схем называются «принципиальными схемами». Чертежи электрических схем называют «электрическими схемами». Как и другие диаграммы, эти диаграммы обычно рисуются чертежниками, а затем распечатываются. Диаграммы также могут быть созданы в цифровом виде с использованием специализированного программного обеспечения.

Схема - это схема электрической цепи. Схемы - это графические изображения основных соединений в цепи, но они не являются реалистичным изображением цепи. На схемах используются символы для обозначения компонентов в цепи.Условные обозначения используются в схеме, чтобы обозначить путь потока электроэнергии. Мы используем обычное соглашение: от положительной клеммы к отрицательной. Реалистичный путь перетока электричества - от отрицательной клеммы к положительной.

На принципиальных схемах используются специальные символы. Символы на чертежах показывают, как компоненты, такие как резисторы, конденсаторы, изоляторы, двигатели, розетки, фонари, переключатели и другие электрические и электронные компоненты, соединяются вместе. Диаграммы очень помогают, когда рабочие пытаются выяснить, почему схема не работает правильно.

Ток, протекающий в электрической или электронной цепи, может внезапно возрасти при выходе из строя компонента. Это может вызвать серьезные повреждения других компонентов цепи или создать опасность возгорания. Для защиты от этого в цепь можно подключить предохранитель или устройство, называемое «автоматический выключатель». Автоматический выключатель размыкает или «разрывает» цепь, когда ток в этой цепи становится слишком большим, или предохранитель «перегорает». Это дает защиту.

Прерывание от замыкания на землю (G.F.I.) устройства [изменить | изменить источник]

Стандартный вывод для электрических и электронных цепей - заземление. Когда электрическое или электронное устройство выходит из строя, оно может размыкать обратную цепь на землю. Пользователь устройства может стать частью его электрической цепи, обеспечив обратный путь для электронов через тело пользователя вместо заземления цепи. Когда наше тело становится частью электрической цепи, пользователь может быть серьезно шокирован или даже убит электрическим током.

Для предотвращения опасности поражения электрическим током и возможности поражения электрическим током устройства прерывания замыкания на землю обнаруживают обрыв цепи на землю в подключенных электрических или электронных устройствах. При обнаружении обрыва цепи на землю G.F.I. устройство немедленно открывает источник напряжения для устройства. G.F.I. устройства похожи на автоматические выключатели, но предназначены для защиты людей, а не компонентов цепи.

Короткие замыкания - это цепи, которые возвращаются к источнику питания неиспользованным или с той же мощностью, что и отключенная.Обычно они перегорают, но иногда этого не происходит. Выполнение этого с аккумулятором может вызвать электрический пожар.

.

Смотрите также