Как определить ноль в розетке


Как найти фазу и ноль в розетке и проводах

Для отыскания фазного провода или клеммы в розетке, вам понадобится один из приборов — индикаторная отвертка или мультиметр.

Определение фазы индикаторной отверткой

Наиболее простой метод определения фазы, который подойдет для любого обывателя — это использование индикаторной отвертки, или как ее еще называют «контрольки».

Контрольная отвертка по внешнему виду очень похожа на обычную, за исключением своей внутренней начинки. Не советую использовать жало отвертки для откручивания или завинчивания винтов. Именно это чаще всего и приводит ее к выходу из строя.

Как определить фазу и ноль этой отверткой? Все очень просто:

  • жалом отвертки прикасаетесь к контакту
  • нажимаете или дотрагиваетесь пальцем до металлической кнопки в верхней части отвертки
  • если светодиод внутри отвертки загорелся — это фазный проводник, если нет — нулевой

Не перепутайте индикаторную отвертку с отверткой для прозвонки. Последняя в своей конструкции имеет батарейки. Здесь для того, чтобы определить фазу и ноль, при касании жалом контактов, не нужно дотрагиваться пальцем до металлической площадки на конце. Иначе отвертка будет светиться в любом случае.

По правилам, лампочка индикатора рассчитанного на 220-380В, должна светиться при напряжении от 50В и более.

Аналогичным образом определяется фаза в розетке, выключателе и любом другом оборудовании.

Меры безопасности при работе с «пробником»

  • никогда не дотрагивайтесь до нижней части отвертки при замерах
  • отвертка перед измерением должна быть чистой, иначе может произойти пробой изоляции
  • если индикаторной отверткой необходимо определить отсутствие напряжения, а не его наличие, для того чтобы безопасно можно было работать с проводкой, сначала проверьте работоспособность прибора на оборудовании заведомо находящегося под напряжением.

Как определить фазу и ноль мультиметром или тестером

Здесь в первую очередь переключите тестер в режим измерения переменного напряжения. Далее замер можно сделать несколькими способами:

  • зажимаете один из щупов двумя пальцами. Второй щуп подводите к контакту в розетке или выключателе. Если показания на табло мультиметра будут незначительными (до 10 Вольт) — это говорит о том, что вы коснулись нулевого проводника. Если коснуться другого контакта — показания изменятся. В зависимости от качества вашего прибора, это может быть несколько десятков вольт, а также от 100В и выше. Делаем вывод, что в данном контакте фаза.
  • если вы боитесь в любом случае прикасаться руками к щупу, можно попробовать по другому. Один стержень вставляете в розетку, а другим просто дотрагиваетесь до стенки рядом с розеткой. Если у вас штукатурка, результат будет похожим с первым измерением.
  • еще один способ — одним из щупов прикасаетесь к заведомо заземленной поверхности (корпус щита или оборудования), а вторым прикасаетесь к измеряемому проводу. Если он будет фазным, тестер покажет наличие напряжения 220В.

Меры безопасности при работе с мультиметром:

  • обязательно перед определением фазы по первому способу (когда зажимаете пальцами щуп) убедитесь, что мультиметр включен в положение «замер напряжения» — значок ~V или ACV. Иначе может ударить током.
  • некоторые «опытные » электрики для определения фазы, используют так называемую контрольную лампочку. Не рекомендую рядовым пользователям такой метод, тем более он запрещен правилами. Используйте только исправные и проверенные измерительные приборы.

В современных квартирах в розетки и распредкоробки заходят трехжильные провода. Фазный, рабочий нулевой и защитный. Как отличить их между собой можно узнать из статьи 4 способа отличить заземляющий проводник от нулевого.

Статьи по теме

способов обнаружения и удаления выбросов | Наташа Шарма

Что вы ищете, работая над проектом Data Science? Что является наиболее важной частью фазы EDA? Есть определенные вещи, которые, если не будут выполнены на этапе EDA, могут повлиять на дальнейшее статистическое моделирование / моделирование машинного обучения. Один из них - поиск «выбросов». В этом посте мы попытаемся понять, что такое выброс? Почему важно идентифицировать выбросы? Какие есть методы для выбросов? Не волнуйтесь, мы не будем проходить только теоретическую часть, мы также займемся кодированием и построением графиков данных.

Определение Википедии,

В статистике выброс - это точка наблюдения, удаленная от других наблюдений.

Приведенное выше определение предполагает, что выброс - это что-то отдельное / отличное от толпы. Многие мотивационные видео предлагают отличиться от толпы, особенно Малькольма Гладуэлла. Что касается статистики, это тоже хорошо или нет? мы собираемся найти это в этом посте.

Google Image - Wikihow

Вы видите что-нибудь по-другому на изображении выше? Все числа в диапазоне 30, кроме числа 3.Это наш выброс, потому что он не где-то рядом с другими числами.

Теперь мы знаем, что такое выброс, но задаетесь ли вы вопросом, как выброс представил население?

Проект Data Science начинается со сбора данных, и именно тогда выбросы впервые представляются населению. Однако на этапе сбора данных о выбросах вы вообще не узнаете. Выбросы могут быть результатом ошибки во время сбора данных или могут быть просто показателем расхождения в ваших данных.

Давайте посмотрим на несколько примеров. Предположим, вас попросили понаблюдать за выступлениями индийской команды по крикету, т. Е. Пробегом каждого игрока, и собрать данные.

Собранные данные

Как вы можете видеть из собранных выше данных, все остальные игроки набрали 300+, кроме Игрока 3, который набрал 10. Эта цифра может быть просто ошибкой ввода или дисперсией в ваших данных и указанием, что Player3 работает очень плохо, поэтому требует улучшений.

Теперь, когда мы знаем, что выбросы могут быть либо ошибкой, либо просто отклонением, как бы вы решили, важны они или нет. Что ж, это довольно просто, если они являются результатом ошибки, тогда мы можем их игнорировать, но если это просто расхождение в данных, нам нужно подумать немного дальше. Прежде чем мы попытаемся понять, игнорировать выбросы или нет, нам необходимо знать способы их выявления.

Большинство из вас может подумать: «О! Я могу просто получить пик данных, чтобы найти выбросы, как мы это сделали в ранее упомянутом примере крикета.Давайте представим файл с 500+ столбцами и 10k + строками. Как вы думаете, выбросы можно найти вручную? Чтобы облегчить обнаружение выбросов, у нас есть множество методов статистики, но мы будем обсуждать только некоторые из них. В основном мы будем стараться рассматривать методы визуализации (самые простые), а не математические.

Итак, приступим. Мы будем использовать набор данных Boston House Pricing Dataset, который включен в API набора данных sklearn. Мы загрузим набор данных и разделим функции и цели.

 boston = load_boston () 
x = boston.data
y = boston.target
columns = boston.feature_names # создать фрейм данных
boston_df = pd.DataFrame (boston.data)
boston_df.columns = columns
boston_df.head ()
Boston Housing Data

Характеристики / независимая переменная будет использоваться для поиска любых выбросов. Глядя на данные выше, кажется, что у нас есть только числовые значения, то есть нам не нужно выполнять какое-либо форматирование данных. (Вздох!)

Есть два типа анализа, которым мы будем следовать, чтобы найти выбросы - Uni-variate (анализ выбросов с одной переменной) и многомерный (анализ выбросов с двумя или более переменными).Не запутайтесь, когда вы начнете кодировать и строить график данных, вы сами убедитесь, насколько легко было обнаружить выброс. Для простоты мы начнем с основного метода обнаружения выбросов и постепенно перейдем к более продвинутым методам.

Обнаружение выбросов с помощью инструментов визуализации

Коробчатая диаграмма-

Определение Википедии,

В описательной статистике прямоугольная диаграмма - это метод графического изображения групп числовых данных через их квартили.Коробчатые диаграммы также могут иметь линий, идущих вертикально на из прямоугольников ( усов, ) , указывающих на изменчивость за пределами верхнего и нижнего квартилей, отсюда термины прямоугольная диаграмма и прямоугольная диаграмма. Выбросы могут быть , нанесенными на график как отдельных точек.

Приведенное выше определение предполагает, что если есть выброс, он будет отображаться как точка на прямоугольной диаграмме, а другая совокупность будет сгруппирована вместе и отображаться в виде прямоугольников.Давайте попробуем и увидим сами.

 import seaborn as sns 
sns.boxplot (x = boston_df ['DIS'])
Boxplot - Distance to Employment Center

На графике выше показаны три точки от 10 до 12, это выбросы, поскольку они не включены в рамку другое наблюдение, т. е. не где-то рядом с квартилями.

Здесь мы проанализировали однозначный выброс, т.е. мы использовали столбец DIS только для проверки выброса. Но мы также можем проводить многомерный анализ выбросов. Можем ли мы провести многомерный анализ с помощью прямоугольной диаграммы? Ну, это зависит от того, если у вас есть категориальные значения, вы можете использовать их с любой непрерывной переменной и выполнять многомерный анализ выбросов.Поскольку у нас нет категориальной ценности в нашем наборе данных Boston Housing, нам, возможно, придется забыть об использовании ящичной диаграммы для многомерного анализа выбросов.

Диаграмма рассеяния -

Определение в Википедии

Диаграмма рассеяния - это тип графика или математической диаграммы, использующей декартовы координаты для отображения значений обычно двух переменных для набора данных. Данные отображаются как набор из точек , каждая из которых имеет значение , одна переменная , определяющая положение на горизонтальной оси , , и значение , другая переменная , определяющая положение на вертикальной оси , . .

Как следует из определения, диаграмма рассеяния - это набор точек, который показывает значения двух переменных. Мы можем попытаться построить диаграмму рассеяния для двух переменных из нашего набора данных о жилищном строительстве.

 fig, ax = plt.subplots (figsize = (16,8)) 
ax.scatter (boston_df ['INDUS'], boston_df ['TAX'])
ax.set_xlabel ('Доля акров, не связанных с розничной торговлей на город ')
ax.set_ylabel (' Полная ставка налога на имущество на $ 10 000 ')
plt.show ()
Точечная диаграмма - Доля некоммерческих коммерческих площадей на город по сравнению с полной стоимостью налога на недвижимость

На графике выше мы видим, что большинство точек данных находятся внизу слева, но есть точки, которые далеки от населения, например, в правом верхнем углу.

Выявление выбросов с помощью математической функции

Z-Score-

Определение Википедии

Z-score - это стандартное отклонение со знаком, на которое значение наблюдения или точки данных превышает среднее значение того, что наблюдается или измеряется.

Интуиция, лежащая в основе Z-показателя, заключается в описании любой точки данных путем определения их взаимосвязи со стандартным отклонением и средним значением группы точек данных.Z-оценка находит распределение данных, где среднее значение равно 0, а стандартное отклонение равно 1, то есть нормальное распределение.

Вам должно быть интересно, как это помогает в выявлении выбросов? Что ж, при вычислении Z-показателя мы повторно масштабируем и центрируем данные и ищем точки данных, которые слишком далеки от нуля. Эти точки данных, которые слишком далеки от нуля, будут рассматриваться как выбросы. В большинстве случаев используется порог 3 или -3, т.е. если значение Z-оценки больше или меньше 3 или -3 соответственно, эта точка данных будет идентифицирована как выбросы.

Мы будем использовать функцию Z-score, определенную в библиотеке scipy, для обнаружения выбросов.

 из scipy import stats 
import numpy as npz = np.abs (stats.zscore (boston_df))
print (z)
Z-score of Boston Housing Data

Глядя на код и выходные данные выше, трудно сказать какая точка данных является выбросом. Давайте попробуем определить порог для выявления выброса.

 порог = 3 
печать (np.where (z> 3))

Это даст результат, как показано ниже -

Точки данных, где Z-оценка больше 3

Результаты не могут вас смутить.Первый массив содержит список номеров строк, а второй массив номеров соответствующих столбцов, что означает, что z [55] [1] имеют Z-оценку выше 3.

 print (z [55] [1]) 3.375038763517309 

Итак , точка данных - 55-я запись в столбце ZN является выбросом.

Оценка IQR -

График в виде прямоугольников использует метод IQR для отображения данных и выбросов (форма данных), но для того, чтобы получить список идентифицированных выбросов, нам нужно будет использовать математическую формулу и получить выброс данные.

Определение Википедии

Межквартильный диапазон ( IQR ), также называемый средним или средним 50% , или технически H-разбросом , является мерой статистической дисперсии, равной разница между 75-м и 25-м процентилями или между верхним и нижним квартилями, IQR = Q 3 - Q 1.

Другими словами, IQR - это первый квартиль, вычитаемый из третьего квартиля; эти квартили можно четко увидеть на прямоугольной диаграмме данных.

Это мера дисперсии, аналогичная стандартному отклонению или дисперсии, но гораздо более устойчивая к выбросам.

IQR в чем-то похож на Z-оценку с точки зрения определения распределения данных и последующего сохранения некоторого порога для выявления выброса.

Давайте выясним, что мы можем использовать коробчатый график с использованием IQR и как мы можем использовать его для поиска списка выбросов, как мы это делали при вычислении Z-показателя. Сначала мы рассчитаем IQR,

 Q1 = boston_df_o1.quantile (0.25) 
Q3 = boston_df_o1.quantile (0,75)
IQR = Q3 - Q1
print (IQR)

Здесь мы получим IQR для каждого столбца.

IQR для каждого столбца

Поскольку теперь у нас есть оценки IQR, пора зафиксировать выбросы. Приведенный ниже код даст результат с некоторыми истинными и ложными значениями. Точка данных, где у нас есть False, означает, что эти значения действительны, тогда как True указывает на наличие выброса.

 print (boston_df_o1 <(Q1 - 1.5 * IQR)) | (boston_df_o1> (Q3 + 1.5 * IQR)) 
Обнаружение выбросов с помощью IQR

Теперь, когда мы знаем, как обнаруживать выбросы, важно понимать, нужны ли они быть удаленным или исправленным.В следующем разделе мы рассмотрим несколько методов удаления выбросов и, при необходимости, подстановки новых значений.

Во время анализа данных, когда вы обнаруживаете выброс, одним из самых сложных решений может быть то, как поступить с выбросом. Должны ли они их удалить или исправить? Прежде чем говорить об этом, мы рассмотрим несколько методов удаления выбросов.

Z-Score

В предыдущем разделе мы видели, как можно обнаружить выбросы, используя Z-оценку, но теперь мы хотим удалить или отфильтровать выбросы и получить чистые данные.Это можно сделать с помощью всего одного строчного кода, поскольку мы уже вычислили Z-оценку.

 boston_df_o = boston_df_o [(z <3) .all (axis = 1)] 
С и без размера выброса набора данных

Итак, приведенный выше код удалил около 90+ строк из набора данных, т.е. выбросы были удалены.

Оценка IQR -

Так же, как Z-оценка, мы можем использовать ранее рассчитанную оценку IQR, чтобы отфильтровать выбросы, сохраняя только действительные значения.

 boston_df_out = boston_df_o1 [~ ((boston_df_o1 <(Q1 - 1.5 * IQR)) | (boston_df_o1> (Q3 + 1.5 * IQR))). Any (axis = 1)] boston_df_out.shape 

Приведенный выше код удалит выбросы из набора данных.

Существует несколько способов обнаружения и удаления выбросов, но методы, которые мы использовали для этого упражнения, широко используются и просты для понимания.

Следует ли удалять выбросы. Эти мысли могут возникать у каждого аналитика / специалиста по данным хоть раз при каждой проблеме, над которой он работает. Я нашел несколько хороших объяснений -

https: // www.researchgate.net/post/When_is_it_justifiable_to_exclude_outlier_data_points_from_statistical_analyses

https://www.researchgate.net/post/Which_is_the_best_method_for_removing_outliers_in_a_best_method_for_removing_outliers_in_a_a_data_set 9000-data_set 9000-data-data_set

Подводя итог их объяснения - неверные данные, неправильные вычисления, их можно определить как выбросы, и их следует отбросить, но в то же время вы можете захотеть исправить и их, поскольку они изменяют уровень данных i.е. означают, что вызывает проблемы при моделировании данных. Например, 5 человек получают зарплату 10К, 20К, 30К, 40К и 50К, и вдруг один из людей начинает получать зарплату 100К. Рассмотрите эту ситуацию, поскольку, если вы являетесь работодателем, новое обновление заработной платы может быть воспринято как необъективное, и вам может потребоваться увеличить зарплату и другим сотрудникам, чтобы сохранить баланс. Итак, может быть несколько причин, по которым вы хотите понять и исправить выбросы.

На протяжении этого упражнения мы видели, как на этапе анализа данных можно столкнуться с некоторыми необычными данными i.е выброс. Мы узнали о методах, которые можно использовать для обнаружения и удаления этих выбросов. Но был поднят вопрос о том, можно ли удалить выбросы. Чтобы ответить на эти вопросы, мы нашли дополнительные материалы для чтения (эти ссылки упоминаются в предыдущем разделе). Надеюсь, этот пост помог читателям узнать о выбросах.

Note- Для этого упражнения использовались инструменты и библиотеки, указанные ниже.

Framework- Jupyter Notebook, Language- Python, Libraries - библиотека sklearn, Numpy, Panda и Scipy, Plot Lib- Seaborn и Matplot.

  1. Boston Dataset
  2. Github Repo
  3. KDNuggets выбросы
  4. Обнаружение выбросов
.

Что такое полюса и нули в передаточных функциях

  • Сетевые сайты:
    • Последний
    • Новости
    • Технические статьи
    • Последний
    • Проектов
    • Образование
    • Последний
    • Новости
    • Технические статьи
    • Обзор рынка
    • Образование
    • Последний
    • Новости
    • Мнение
    • Интервью
    • Особенности продукта
    • Исследования
    • Форумы
  • Авторизоваться
  • Присоединиться
    • Авторизоваться
    • Присоединиться к AAC
    • Или войдите с помощью

      • Facebook
      • Google

0:00 / 0:00

  • Подкаст
.

машинное обучение - Как определить количество слоев и узлов нейронной сети

Переполнение стека
  1. Около
  2. Продукты
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
  3. Вакансии Программирование и связанные с ним технические возможности карьерного роста
  4. Талант Нанимайте технических специалистов и создавайте свой бренд работодателя
.

Страница не найдена | MIT

Перейти к содержанию ↓
  • Образование
  • Исследование
  • Инновации
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Выпускников
  • О MIT
  • Подробнее ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О MIT
Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов

Предложения или отзывы?

.

Смотрите также