Как подключить фотореле через выключатель


3 схемы подключения датчика света

Фотореле, датчик света или как его еще называют датчик день-ночь, необходим для автоматического управления светильниками без вашего участия, в зависимости от уровня освещенности.

Стемнело на улице – фонарь сам собой включился. Утром при восходе солнца отключился.

От него же можно запитывать рекламные баннеры и вывески на фасадах домов и магазинов.

Кто-то в этом деле использует реле времени или таймер-розетки. Однако в связи с постоянным изменением продолжительности светового дня, такие девайсы придется постоянно перенастраивать.

Поэтому полноценной альтернативой датчикам света их считать никак нельзя.

Настройка датчика света

Кроме того, у фотореле есть собственная регулировка чувствительности. Вы можете вручную задать тот или иной порог срабатывания.

То есть, будет фонарь срабатывать при полной темноте уже ночью, или вечером, когда только-только начинает смеркаться.

На популярных моделях фотореле от ИЭК ФР-601 и ФР-602 регулятор расположен в основании и поворачивается в диапазоне от “+” до “-”.

Если вы его выкрутите на максимальный “+”, то фотореле будет срабатывать в сумерках или при плохой погоде (небо в тучах). По техническим характеристикам эта регулировка соответствует примерно 50 Люкс.

Если убрать его в крайнее положение на “-”, то датчик сработает только в полной темноте (освещенность 5 Люкс).

Обычно его устанавливают в среднее положение.

Крутилки эти довольно нежные и при чрезмерном усилии легко ломаются. Так что будьте осторожны, в особенности регулируя чувствительность на морозе.

При этом обратите внимание на важный нюанс.

Ошибка №1

Настраивать фотореле следует именно на улице, а не в помещении.

В комплекте с датчиком всегда идет черный пакетик для проверки работоспособности. Накрыли им колпак прибора – реле сработало.

Так вот, у многих моделей чувствительные фотоэлементы, расположенные внутри корпуса, могут реагировать помимо освещенности еще и на ультрафиолет в составе солнечных лучей.

Дома за счет остекления 80% УФ-лучей гасится, а на улице – нет. Поэтому настройка в домашних условиях с созданием искусственного затемнения, может отличаться от реальной уличной настройки.

Когда не хватает диапазона, некоторые применяют смекалку и для дополнительной регулировки используют фольгу. Ею обматывают датчик (полностью или наполовину), и тем самым, добиваются изначально большего значения затемнения.

Схема подключения напрямую

Для подключения датчика света используется трехпроводная схема. Она означает, что вам необходимо подать на прибор полноценные 220В (фазу+ноль), а не только фазу.

Практически такая же схема используется и для датчиков движения. Правда там есть варианты и двухпроводного подключения без ноля.

Куда подключать фазу, а куда ноль? В этом деле можете ориентироваться по цветам.

Обычно один из проводов должен быть синего или зеленого цвета – это ноль.

Два других проводника также отличаются расцветкой. Например, один будет коричневым (черным), другой – красным.

Коричневый – это входная фаза от автомата питания. Третий провод (красный) – это выход на нагрузку. На нем фаза появляется только в момент срабатывания фотореле.

Ее как раз-таки и нужно заводить в светильник.

Заводские провода на датчике коротковаты, поэтому их приходится удлинять. Приготовьте заранее клеммы или гильзы для прессовки.

Наращивание производится кабелем сечением 1,5мм2. Общее соединение всех проводников должно осуществляться в защитной распредкоробке.

Вот как будет выглядеть такая схема подключения напрямую от выключателя расположенного в распредщитке.

Схема подключения через выключатель

Если вы захотите установить еще один промежуточный одноклавишный выключатель, дабы не бегать каждый раз в щитовую для отключения света, то схема соединения проводов фотореле немного изменится:

В распредкоробку будет заходить 4 кабеля. Фаза питания будет поступать по следующей цепочке:

  • автомат в щитовой
  • выключатель света

Где устанавливать?

Обратите внимание на место установки фотореле.

Ошибка №2

При любой схеме подключения сам датчик не должен попадать в зону освещения светильника.

Поэтому в 90% случаев фотореле размещают над фонарем.

Если позволяет корпус прожектора, то можно даже закрепить непосредственно на нем.

В противном случае вся схема будет работать некорректно и возможны самопроизвольные срабатывания и моргания.

При этом на кратковременные вспышки, например свет фар от проезжающих машин, реле реагировать не должно, благодаря выставленной на заводе задержке по времени.

Если нет никакой возможности спрятать датчик как можно дальше от светильника, то хотя бы прикройте корпус со стороны фонаря фанерой или другой непрозрачной перегородкой.

Также некорректная работа возможна по истечении длительной эксплуатации. Связано это с тем, что колпачок фотореле постепенно загрязняется и темнеет, пропуская со временем уже другое количество солнечных лучей через себя.

В результате резко меняются пороги срабатывания. Если это обычная грязь и пыль, то проблема легко решается влажной очисткой. А вот когда чернеет от времени пластик, тут уже поможет только замена защитного колпачка или всего прибора целиком.

Еще часто в таких реле сгорает стабилитрон. Это их главное слабое место.

Также при выборе фотореле обращайте внимание на температуру эксплуатации. К примеру, те же ФР-601 хорошо работают до -25С, а потом у них начинаются проблемы.

В этом случае вам опять поможет обычный выключатель света. Только в схеме его нужно подключать иначе, чем рассматривалось выше.

Фаза через него должна проходить напрямую к светильнику. Это своего рода перемычка на тот случай, если датчик не сработал или вышел из строя.

Свет будет зажигаться обычным щелчком выключателя, ровно также, как и все лампочки у вас дома.

Также в паспортных данных таких фотореле указана степень защиты - IP44.

Это означает, что датчики можно спокойно использовать на улице. Они защищены от брызг и капель дождя.

Однако обращайте внимание на правильное расположение прибора.

Ошибка №3

Например, отдельные модели можно устанавливать только вниз «головой»!

У них в защитной крышечке присутствует отверстие, через которое влага запросто может проникать во внутрь устройства.

Работа датчика света наоборот

А если вам для каких-то нужд понадобится, чтобы реле работало в реверсном режиме? Подавало напряжение и включало нагрузку днем, а выключало ночью.

Например, для освещения в сарае с животными, где нет окон. Что делать в этом случае?

Тогда идете в ближайший магазин и покупаете промежуточное реле, у которого один из контактов замыкается, а другой размыкается при срабатывании.

Все что вам нужно будет сделать, это подключать данное промежуточное реле после датчика света по нижеприведенной схеме.

В качестве такого реле может выступать и пускатель с доп.контактами.

Схема подключения через пускатель

Также пускатель понадобится при управлении освещением с мощной нагрузкой. Допустим это не одна лампочка, а полноценные уличные прожекторы или фонари с ДРЛ, ДНаТ или другими мощными источниками света.

Стандартное фотореле от того же IEK ФР-601, рассчитано на подключение нагрузки не более 10А. Это несколько светодиодных прожекторов мощностью около 2кВт.

Хотите больше? Воспользуйтесь следующей схемой с магнитным пускателем.

Его катушка подключается как раз-таки к фотореле, а силовые контакты подают питание на основную линию освещения.

Если вас не устраивает большой габаритный колпак датчика света, который портит весь дизайн фасада здания, воспользуйтесь фотореле с выносным датчиком.

В этом случае основной коммутирующий элемент располагается в щитке и напоминает современный модульный контактор на дин-рейке. Миниатюрный выносной датчик тем временем незаметно прячется под крышей или в любом другом месте.

Схема подключения здесь следующая:

Более расширенный и усовершенствованный вариант:

Внутри прибора по прежнему коммутируется фазный проводник.

Настройка чувствительности может осуществляется потенциометром на передней панели, в зависимости от модели. Вам больше не придется каждый раз подниматься на высоту под козырек дома.

Рассчитаны такие приборы уже на несколько большие токи (25А), чем китайские модели ФР-601.

Выносной датчик можно наращивать проводом до 50 метров. Вы его безболезненно сможете протянуть не только через крышу дома, но и через весь участок.

Как подключить реле через оптопару

В следующем сообщении описывается, как управлять реле с помощью изолированного метода или через оптопару.

Вопрос был задан одной из заинтересованных участниц этого блога, мисс Винита.

Прежде чем изучать предлагаемую конструкцию, давайте сначала разберемся, как работает оптрон.

Как работает оптопара

Оптопара - это устройство, которое включает светодиод и фототранзистор внутри герметичного, водонепроницаемого, светонепроницаемого корпуса в виде 8-контактной ИС (похожей на микросхему 555). ).

Светодиод имеет оконечную нагрузку на пару выводов, в то время как три вывода фототранзистора оканчиваются поверх остальных трех назначенных выводов.

Идея работы реле с оптопарой проста, все дело в обеспечении входного постоянного тока от источника, который должен быть изолирован от выводов светодиода через ограничительный резистор (как мы обычно делаем с обычными светодиодами) и для переключения фототранзистора в ответ на поданные входные триггеры.

Вышеуказанное действие освещает внутренний светодиод, свет которого обнаруживается фототранзистором, заставляя его проходить через соответствующие выводы.

Выход фототранзистора обычно используется для управления предшествующим изолированным каскадом, например каскадом драйвера реле.

Как показано на следующей принципиальной схеме, драйвер реле может состоять из транзистора NPN или транзистора PNP.

Работа схемы

Если это PNP-транзистор, база соединена с коллектором фототранзистора, в качестве альтернативы, если NPN-транзистор используется в драйвере реле, триггер принимается от эмиттера фототранзистора точно так же, как парная конфигурация Дарлингтона.

Остальные операции очевидны.

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемами, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

.

Как работает реле - как подключить замыкающие и замыкающие контакты

Электрическое реле состоит из электромагнита и подпружиненных переключающих контактов. Когда электромагнит включается / выключается от источника постоянного тока, пружинный механизм соответствующим образом подтягивается и отпускается этим электромагнитом, обеспечивая переключение между концевыми выводами этих контактов. Внешняя электрическая нагрузка, подключенная к этим контактам, впоследствии включается / выключается в ответ на переключение релейного электромагнита.

В этом посте мы подробно узнаем о том, как реле работает в электронных схемах, как определить его распиновку любого реле через счетчик и подключить в схемах.

Введение

Реле предназначены для таких приложений, будь то мигание лампы, включение двигателя переменного тока или другие подобные операции. Однако молодые энтузиасты электроники часто сбиваются с толку, оценивая выводы реле и настраивая их со схемой возбуждения внутри предполагаемой электронной схемы.

В этой статье мы изучим основные правила, которые помогут нам определить распиновку реле и узнать, как оно работает. Приступим к обсуждению.

Как работает реле

О работе электрического реле можно узнать из следующих пунктов:

  1. Релейный механизм в основном состоит из катушки и подпружиненного контакта, который может свободно перемещаться по оси вращения.
  2. Центральный полюс откидывается или поворачивается таким образом, что, когда на катушку реле подается напряжение, центральный полюс соединяется с одной из боковых клемм устройства, называемой замыкающим контактом (нормально замкнутым).
  3. Это происходит из-за того, что полюсное железо притягивается электромагнитным напряжением катушки реле.
  4. И когда катушка реле выключена, полюс отключается от нормально разомкнутой клеммы и соединяется со второй клеммой, называемой нормально разомкнутым контактом.
  5. Это положение контактов по умолчанию, оно происходит из-за отсутствия электромагнитной силы, а также из-за натяжения пружины металлического полюса, которое обычно удерживает полюс соединенным с замыкающим контактом.
  6. Во время таких операций включения и выключения он переключается с N / C на N / O поочередно в зависимости от состояний ON / OFF катушки реле
  7. Катушка реле, намотанная на железный сердечник, ведет себя как прочный электромагнит, когда через катушку пропускают постоянный ток.
  8. Когда катушка находится под напряжением, генерируемое электромагнитное поле мгновенно вытягивает близлежащий подпружиненный металлический полюс, реализуя описанное выше переключение контактов.
  9. Вышеупомянутый подвижный подпружиненный полюс по своей сути образует главный центральный переключающий провод, а его конец ts заканчивается как вывод этого полюса.
  10. Два других контакта N / C и N / O образуют связанные дополнительные пары клемм реле или выводы контактов, которые поочередно подключаются и отключаются от центрального полюса реле в ответ на активацию катушки.
  11. Эти замыкающие и замыкающие контакты также имеют концевые заделки, которые выходят из блока реле и образуют соответствующие выводы реле.

Следующая приблизительная симуляция показывает, как полюс реле перемещается в ответ на катушку электромагнита при включении и выключении с входным напряжением питания.Мы можем ясно видеть, что первоначально центральный полюс удерживается подключенным к нормально-замкнутому контакту, а когда на катушку подается питание, полюс тянется вниз из-за электромагнитного воздействия катушки, заставляя центральный полюс соединяться с нормально-замкнутым контактом. О контакт.

Пояснение к видео

Таким образом, в основном есть три вывода контактов для реле, а именно центральный полюс, НЗ и НЗ.

Две дополнительные выводы завершаются катушкой реле

Это базовое реле также называется реле типа SPDT, что означает однополюсный двойной ход, так как здесь у нас есть один центральный полюс, но два альтернативных боковых контакта в виде N / O, N / C, отсюда и термин SPDT.

Таким образом, всего у нас есть 5 выводов в SPDT-реле: центральная подвижная или переключающая клемма, пара замыкающих и замыкающих клемм и, наконец, две клеммы катушки, которые вместе составляют выводы реле.

Как определить выводы реле и подключить реле

Обычно и, к сожалению, многие реле не имеют маркировки выводов, что затрудняет их идентификацию новым энтузиастам электроники и их использование для предполагаемых приложений.

Распиновки, которые необходимо идентифицировать, следующие (в указанном порядке):

  1. Выводы катушки
  2. Вывод общего полюса
  3. Вывод замыкающего контакта
  4. Вывод замыкающего контакта
Идентификация контакта Типичные выводы реле могут быть выполнены следующим образом:

1) Установите мультиметр в диапазоне Ом, предпочтительно в диапазоне 1К.

2) Начните с подключения измерительных щупов к любому из двух контактов реле случайным образом, пока вы не найдете контакты, которые указывают на какое-то сопротивление на дисплее измерителя.Обычно это может быть любое значение от 100 Ом до 500 Ом. Эти контакты реле будут обозначать выводы катушки реле.

3) Затем выполните ту же процедуру и подключите стержни счетчика в случайном порядке к оставшимся трем клеммам.

4) Продолжайте делать это до тех пор, пока не найдете два контакта реле, указывающих на непрерывность между ними. Эти две распиновки будут, очевидно, нормально закрытым и полюсом реле, потому что, поскольку реле не запитано, полюс будет соединен с размыкающим контактом из-за внутреннего напряжения пружины, что указывает на непрерывность друг друга.

5) Теперь вам нужно просто идентифицировать другой одиночный терминал, который может быть ориентирован где-то между двумя вышеуказанными терминалами, представляющими треугольную конфигурацию.

6) В большинстве случаев центральная распиновка из этой треугольной конфигурации будет вашим контактом реле, замыкающий контакт уже идентифицирован, и поэтому последним будет замыкающий контакт или вывод вашего реле.

Следующее моделирование показывает, как типичное реле может быть подключено к источнику постоянного напряжения на его катушках и к сетевой нагрузке переменного тока через его замыкающие и замыкающие контакты

Эти три контакта могут быть дополнительно подтверждены включением реле катушку с указанным напряжением и проверив сторону замыкающего контакта с помощью измерителя на непрерывность..

Вышеупомянутая простая процедура может быть применена для определения любой распиновки реле, которая может быть вам неизвестна или не маркирована.

Теперь, когда мы тщательно изучили, как работает реле и как идентифицировать контакты реле, было бы также интересно узнать подробности о самом популярном типе реле, которое в основном используется в небольших электронных схемах, и о том, как подключите это.

Если вы хотите узнать, как спроектировать и сконфигурировать каскад драйвера реле с использованием транзистора, вы можете прочитать его в следующем посте:

Как сделать схему драйвера транзисторного реле

Типичные контакты реле китайского производства

Как подключить клеммы реле

На следующей схеме показано, как указанное выше реле может быть подключено к нагрузке, так что когда катушка находится под напряжением, нагрузка срабатывает или включается через свои замыкающие контакты и через прилагаемое напряжение питания.

Это напряжение питания последовательно с нагрузкой может соответствовать техническим характеристикам нагрузки. Если нагрузка рассчитана на постоянный потенциал, то это напряжение питания может быть постоянным, если предполагается, что нагрузка будет работать от сети переменного тока, тогда это последовательное питание может быть 220 В или 120 В переменного тока в соответствии со спецификациями.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https: //www.homemade-circuits.com /, где я люблю делиться своими новаторскими идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Как настроить DHCP VLAN Relay на управляемых коммутаторах L2 с помощью нового графического интерфейса?

Эта статья относится к:

T1600G-52TS v3 или выше, T1600G-52PS v3 или выше, T1600G-28PS v3 или выше, T1600G-28TS v3 или выше, T1600G-18TS v2 или выше, T1700X-16TS v3 или выше, T2600G-52TS v3 или выше, T2600G-28TS v3 или выше, T2600G-28MPS v3 или выше, T2600G-28SQ v1 или выше.

Обычно, если клиенту необходимо получить IP-адрес от DHCP-сервера, он должен находиться в одной подсети, поскольку передача DHCP-пакетов ограничена в локальной сети.Этот механизм может доставить неудобства, когда администратору необходимо назначить IP-адреса клиентам в разных подсетях. Потому что в обычных условиях ему приходится развертывать по одному DHCP-серверу для каждой подсети, что неудобно и неэкономично.

Для решения этой проблемы можно настроить DHCP Relay. С помощью DHCP Relay вы можете просто развернуть один DHCP-сервер, и этот сервер может предлагать IP-адреса клиентам в разных подсетях или VLAN.

DHCP Relay включает DHCP Interface Relay и DHCP VLAN Relay .

Реле интерфейса DHCP :

DHCP Interface Relay может применяться в таком сценарии: сервер DHCP развернут для предложения IP-адресов клиентам в нескольких подсетях. Все эти подсети имеют собственный шлюз уровня 3 (интерфейс L3 или интерфейс VLAN).

При включенном ретрансляции интерфейса DHCP, когда коммутатор получает пакеты запроса DHCP, он пересылает пакеты через шлюз уровня 3 на сервер DHCP, а затем перенаправляет предложения DHCP от сервера DHCP в соответствующие подсети.Сервер DHCP определит, какой IP-адрес подсети должен быть назначен клиентам на основе шлюза уровня 3.

DHCP-реле VLAN :

DHCP VLAN Relay может применяться в таком сценарии: DHCP-сервер развернут для предложения IP-адресов клиентам в нескольких VLAN. Эти сети VLAN не имеют интерфейсов VLAN.

DHCP VLAN Relay может вручную назначить интерфейс L3 для всех VLAN в качестве интерфейса агента ретрансляции по умолчанию. Все пакеты DHCP можно пересылать через этот интерфейс, чтобы клиенты могли получать IP-адреса от сервера DHCP.

Здесь мы используем пример, чтобы представить конфигурации DHCP VLAN Relay .

ПК 1 и ПК 2 находятся в разных сетях VLAN, у обеих сетей VLAN нет интерфейсов VLAN. Теперь администратор развертывает один DHCP-сервер в сети и хочет, чтобы сервер назначил IP-адреса ПК 1 и ПК 2.

Схема конфигурации

В данной ситуации DHCP-сервер и компьютеры изолированы в разных сегментах сети, поэтому DHCP-запрос от клиентов не может быть напрямую перенаправлен на DHCP-сервер.Учитывая, что две сети VLAN не имеют шлюзов уровня 3, мы рекомендуем настроить DHCP VLAN Relay в соответствии с требованиями.

В этом примере сервер DHCP демонстрируется с помощью T2600G-52TS, а агент ретрансляции DHCP демонстрируется с помощью T2600G-28TS. Мы покажем вам конфигурации как DHCP-сервера, так и DHCP-агента ретрансляции.

Настройка DHCP-сервера

  1. Перейдите на страницу ФУНКЦИИ L3> Служба DHCP> Сервер DHCP> Сервер DHCP , включите сервер DHCP глобально.

  1. Перейдите к L3 FEATURES> DHCP Service> DHCP Server> Pool Setting page, создайте один пул DHCP IP для VLAN 10 и VLAN 20 в подсети 192.168.0.0/24 ..

Примечание. Для DHCP VLAN Relay сервер DHCP назначает IP-адреса одной и той же подсети как VLAN 10, так и VLAN 20, хотя клиенты принадлежат к разным VLAN. Подсеть назначаемых адресов определяется подсетью, в которой находится интерфейс агента ретрансляции по умолчанию, поэтому здесь мы можем создать только один пул DHCP в 192.168.0.0 / 24 для VLAN 10 и VLAN 20.

Настройка VLAN на агенте ретрансляции DHCP

  1. Перейдите на L2 FEATURES> VLAN> 802.1Q VLAN> VLAN Config page, создайте VLAN 10 и VLAN 20. Добавьте соответствующие порты в VLAN.

  1. Перейдите на страницу L2 FEATURES> VLAN> 802.1Q VLAN> Port Config , установите PVID порта 1/0/1 как 10 и 20 для порта 1/0/2.

Настройка DHCP-ретрансляции VLAN на агенте DHCP-ретрансляции

  1. Перейдите к L3 FEATURES> DHCP Service> DHCP Relay> DHCP Relay Config page, чтобы включить функцию DHCP Relay глобально.

  1. Перейдите к L3 FEATURES> DHCP Service> DHCP Relay> DHCP VLAN Relay page, в разделе Default Relay Agent Interface укажите интерфейс VLAN 1 (интерфейс управления VLAN по умолчанию) в качестве интерфейса агента ретрансляции по умолчанию.

  1. Перейдите к L3 FEATURES> DHCP Service> DHCP Relay> DHCP VLAN Relay page, нажмите, чтобы указать адрес сервера для клиентов в VLAN 10 и VLAN 20.

Теперь все настройки завершены.

Для подробного ознакомления с соответствующими функциями вы также можете обратиться к руководствам пользователя соответствующих функций:

Настройка службы DHCP по адресу: https://www.tp-link.com/us/configuration-guides/configuring_dhcp_t1600g_t2600g/

Настройка 802.1Q VLAN по адресу: https://www.tp-link.com/us/configuration-guides/configuring_802_1q_vlan/

.

Как подключить маршрутизатор / коммутатор через консольный порт? - Блог коммутатора маршрутизатора

  • О нас
  • Магазин на Router-switch.com
  • Инструмент Cisco GPL
Facebook Twitter RSS
  • Дом
  • Сеть
  • Оборудование
    • Межсетевые экраны и безопасность Cisco
    • Интерфейсы и модули Cisco
    • IP-телефоны Cisco
    • Маршрутизаторы Cisco
    • Коммутаторы Cisco
    • Продукты беспроводной связи Cisco
    • Huawei
    • Блок питания
  • Технологии
    • 5G
    • Управление сетью
    • Протокол
    • Маршрутизатор
    • Безопасность и брандмауэр
    • Переключатель
    • Беспроводная связь
  • отзыва
    • Кабели Cisco
    • Аксессуары для кабелей Cisco
    • Безопасность межсетевых экранов Cisco
    • IP-телефоны Cisco VOIP
    • Память и флеш-память Cisco
    • Модули и карты Cisco
    • Модули оптики Cisco
    • Источник питания Cisco
    • Маршрутизаторы Cisco
    • Коммутаторы Cisco
.

Смотрите также