Как подобрать светильник по норме освещенности


Как самостоятельно выполнить расчет освещенности помещения

В электрике существует такое понятие как, расчет освещенности помещения. Данный расчет является фундаментом всей осветительной части электропроводки, поэтому ему следует уделить особое внимание. В этой статье мы подробно разберем:

  • Зачем делать расчет освещенности помещения?
  • А также рассмотрим пошаговое выполнение расчёта освещённости на конкретном примере

Теперь, обо всем по порядку.

Зачем делать расчет освещения?

В первую очередь, данный расчет необходим, для создания достаточной освещенности помещения, которая в свою очередь обеспечивает благоприятные и комфортные условия для жизнедеятельности человека.

Недостаток освещения или его чрезмерность, вызывает сильное напряжение глаз, быструю утомляемость и оказывает ощутимый психологический дискомфорт, что неблагоприятным образом отражается на здоровье человека в целом.

Идеальным освещением для наших глаз, является естественный природный свет (дневное, утреннее или вечернее солнце, солнце за облаками).

Основной задачей расчета освещенности помещения, является максимальное приближение искусственного освещения к естественному. К искусственному освещению относиться такой свет, которым человек имеет возможность управлять.

Электрический свет, является искусственным, он получается в результате преобразование электрической энергии в один из видов электромагнитного излучения, которое воспринимается человеческим глазом как свет. Именно такое преобразование происходит внутри ламп установленных в корпусах осветительных электроустановок (светильники, люстры, бра, торшеры и так далее).

В строительно-проектировочной документации(СНиП) существуют специальные правила, в которых прописаны нормы освещенности для различных видов помещений. Ниже рассмотрен пример, пошагового выполнение расчета с подробными комментариями и пояснениями.

Расчет освещения, пример

Расчет освещенности помещения производиться по формуле:

Для удобства запишем ее так:

Фл = (Ен * S * k * z) / (N * η * n)

где,

1. Фл – световой поток лампы,

2. Ен – норма освещенности

3. S – площадь помещения

4. k - коэффициент запаса

5. z – поправочный коэффициент

6. N – количество принятых светильников

7. η – коэффициент использования светового потока

8. n – число ламп в светильнике.


Данные нашего примера:

  • Жилая комната.
  • Длина – 5,5 м,
  • Ширина – 3,5 м.
  • Потолок - белый крашенный,
  • Стены – обои, светлые однотонные (без рисунка) персикового оттенка,
  • Пол – линолеум, серого цвета

Планируется установка пяти рожковой люстры, с пятью лампами, каждая из которых монтируется внутри плафона, изготовленного из белой матовой ткани во весь размер лампы.

Данная комната имеет стандартную высоту потолков 2,5 м. Опираясь на конструктивное исполнение светильника определяем высоту его подвеса. Для нашего примера эти данные будут следующими:

  •  высота установки люстры от пола до плафонов в которых установлены лампы - 2,3 м

Теперь найдем все необходимые для расчетов данные.

2. Ен - нормированная освещенность

Измеряется в Люксах (Лк), является нормированной величиной, прописанной в своде правил строительной документации СНиП. Ниже представлена таблица норм освещенности.

Таблица №1. Рекомендуемые нормы освещенности жилых помещений, согласно СНиП 23-05-95

Помещение нашего примера - жилая комната. Согласно таблицы №1 нормируемая освещенность для данного вида помещений равна 150 Люкс (Лк).

Ен = 150

Подставим значение в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * S * k * z) / (N * η * n)


3. S – площадь помещения

Для выполнения последующих расчетов нам потребуется знать площадь данной комнаты. Посчитать ее мы можем по формуле площади прямоугольника:

S = а * b,

где,

  • S - площадь помещения (метры квадратные - м2)
  • а - длина помещения (метры квадратные - м2), в нашем примере 5,5 м
  • b - ширина помещения (метры квадратные - м2), в нашем примере 3,5 м

Подставим наши значения

S = a * b = 5,5 * 3,5 = 19,25 м2

S = 19,25

Подставим данные в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * k * z) / (N * η * n)


4. k - коэффициент запаса

Коэффициент запаса (зависит от типа ламп и степени загрязненности помещения) Коэффициент запаса k учитывает запыленность помещения, снижение светового потока ламп в процессе эксплуатации. Значения коэффициента k приведены в таблице.

Таблица №2. Коэффициент запаса для жилых помещений для различных типов ламп

В нашей люстре планируется использование светодиодных ламп, выбираем коэффициент запаса равный 1.

K = 1.

Подставим значение в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * z) / (N * η * n)


5. z – поправочный коэффициент (коэффициент неравномерности)

z - поправочный коэффициент, применяемый в помещениях где требуется освещенность больше чем нормируемая минимальная

Данный коэффициент следует применять в помещениях где планируется выполнение точной зрительной работы, например, читать или писать.

Для ламп накаливания и ДРЛ (ртутная газоразрядная лампа) z = 1,15, для люминесцентных и светодиодных ламп z = 1,1

В наш светильник будут установлены светодиодные лампы, используем поправочный коэффициент 1,1.

z = 1,1

Вставляем данные в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * 1,1) / (N * η * n)


6. N – количество принятых светильников

Освящать комнату будет один светильник, расположенный в центре помещения.

N = 1

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * 1,1) / (1 * η * n)


7. η – коэффициент использования светового потока

Для того что бы найти коэффициент использования светового потока нам потребуется рассчитать индекс помещения – i.

Воспользуемся следующей формулой:

i = S / ((a + b) * h)

где,

  •  i - индекс помещения,
  • S - площадь помещения (метры квадратные - м2), - в нашем примере 19,25 м2;
  • а - длина комнаты (метры квадратные - м2), - в нашем примере 5,5 м;
  • b - ширина комнаты (метры квадратные - м2), - в нашем примере 3,5 м;
  • h - высота подвеса светильника от пола (метры - м), - в нашем примере 2,3 м;

Считаем:

i = S / ((a + b) * h) = 19,25 / ((5,5 + 3,5) * 2,3) = 19,25 / (9 * 2,3) = 19,25 / 20,7 = 0,929...

округляем до значения близкого к:

0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 3, 3.5, 4, 5

В нашем случае это значение 0.9


Теперь нам потребуются данные о дизайне нашей комнаты. Конкретно интересуют три вещи пол, потолок и стены их цветовой оттенок в формате белый - светлый - темный - серый - черный. Например, бежевые стены будут относиться к светлым, красные, вишневые, коричневые к темным, с черным и белым и так все понятно.

Эти оттенки называются коэффициентом отражения (Р) и выражаются в процентном соотношении следующим образом:

  • 70% - белый
  • 50% - светлый
  • 30% - серый
  • 10% - темный
  • 0% - черный

Комната, приведенная в нашем примере, имеет:

  •  Потолок - белый крашенный, в процентном соотношении 70% (белый)
  • Стены – обои светлые, однотонные, (без рисунка) персикового оттенка, в процентном соотношении 50% (светлый)
  • Пол – линолеум серого цвета, в процентном соотношении 30% (серый)

Обладая всеми этими данными, мы можем определить коэффициент использования светового потока светильника - η.

Для этого воспользуемся соответствующей нашему светильнику таблицей, одной из 5 (таблицы №3-7) приведенных ниже.

Наш светильник за счет конструктивного исполнения плафонов (матовая белая ткань) имеет равномерное распределение светового потока, поэтому данные по нему ищем по таблице №5. Ниже приведены 5 таблиц в которых изложены данные для определения светового потока, после которых будет детально разобрана инструкция с описанием того как ими пользоваться.

Таблица №3. Коэффициент использования для потолочного светильника

Таблица №4. Коэффициент использования для подвесного светильника

Таблица №5. Коэффициент использования для светильника с равномерным освещением

Таблица №6. Коэффициент использования для светильников с косинусным распределением светового потока

Таблица №7. Коэффициент использования для светильников с глубокими плафонами

Напомню, светильник нашего примера является равномерным, относится к Таблице №3.

Комната, приведенная в нашем примере, имеет:

  • Потолок - белый крашенный, в процентном соотношении 70% (белый)
  • Стены – обои светлые однотонные (без рисунка) персикового оттенка, в процентном соотношении 50% (светлый)
  • Пол – серый линолеум, в процентном соотношении 30% (серый)

i - который мы рассчитывали выше по формуле, i = S / (a + b) * h)) = 0.9

В правой вертикальной колонке таблицы ищем соответствующий рассчитанному – i.

В горизонтальных строках подбираем данные комнаты, соответствующие нашим:

  • Потолок - 70% (белый),

  •  стены – 50% (светлый),

  • пол – 30% (серый),

Совмещаем линии P и i.

η = 0.51

Подставим полученные данные в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * 1,1) / (1 * 0.51 * n)


8. n – число ламп в светильнике

Люстра в нашем примере пяти рожковая, в ее конструкции предусмотрена установка 5 ламп.

n = 5

Вставляем данное значение в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * 1,1) / (1 * 0.51 * 5)

Все необходимые значения найдены, теперь мы можем рассчитать Фл – световой поток лампы.

Считаем:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * 1,1) / (1 * 0.51 * 5) = 3176,25 / 2,55 = 1245,58…

Округлим 1245,58 до целого значения, получим 1246.

Световой поток лампы измеряется в Люменах (Лм), готовый результат запишем как:

Фл = 1246 Лм

Каждая лампа нашего светильника должна иметь световой поток равный 1246 Лм.

Далее, мы рассмотрим, каким образом выбрать лампу зная ее световой поток, но для начала сделаем небольшое отступление.


В настоящее время на рынке электрической продукции представлены следующие лампы:

  • Лампа накаливания
  • Галогенная лампа
  • Светодиодная лампа
  • Люминесцентная лампа
  • Компактная люминесцентная лампа
  • Газоразрядная лампа

Каждая из этих ламп имеет свои характеристики, особенности, преимущества и недостатки. Поэтому, делая выбор в сторону конкретной лампы нужно учитывать следующие вещи:

  • Мощность лампы
  • Нагрев корпуса (для ламп накаливания и галогенных ламп)
  • Световой поток
  • Цветопередачу

Эти данные (кроме температуры нагрева корпуса) указаны заводом изготовителем на упаковочной коробке лампы, опираясь на них, мы можем выбрать требуемую освещенность для конкретного помещения.

Мощность лампы – определяет, количество потребляемой электроэнергии, измеряется в Ватах (Вт)

Световой поток – излучаемое лампой количество света, измеряется в Люменах (Лм).

Цветопередача – состоит из цветовой температуры и оттенка. Цветовая температура измеряется в диапазоне от красного 1800 К – до синего 16 000 К цвета.

Чем меньше значение, тем цветность ближе к красному, чем больше, тем ближе к синему. Например, знакомая нам всем 100 Ваттная лампа накаливания имеет цветность 2800 К.

Измеряется цветопередача в Кельвинах (К).

Оттенок, для большинства видов ламп освещения, может быть теплого или холодного света, задает общую тональность светового потока.

Таблица №8. Цветопередача некоторых источников света.

Теперь, поговорим о таких понятиях как световой поток и световая отдача.

Световой поток – количество света, излучаемое лампой.

Световая отдача – отношение светового потока к мощности (люмен на ватт, лм/Вт), показатель эффективности осветительной способности лампы, а также ее экономичности.

Ниже приведены шесть таблиц (таблицы №9-14) световой отдачи наиболее распространенных источников света.

Таблица №9. Лапа накаливания, с прозрачным стеклом (2750 К, теплый свет)

Срок службы 1000 часов. Класс энергоэффективности Е.

Таблица №10. Лапа накаливания, с матовым стеклом (2700 К, теплый свет)

Срок службы 1000 часов. Класс энергоэффективности Е.

Таблица №11. Галогенная лампа (3000 К, теплый свет)

Срок службы 2000 часов. Класс энергоэффективности В.

Таблица №12. Компактная люминесцентная лампа (КЛЛ), 2700 К - теплого света

Срок службы от 8 000 до 10 000 часов. Класс энергоэффективности А.

Таблица №13. Светодиодная лампа, 3000 К - теплого света

Срок службы 30 000 – 40 000 часов. Класс энергоэффективности А.

Таблица №14. Светодиодная лампа, 4500 К - белого света

Срок службы 30 000 – 40 000 часов. Класс энергоэффективности А.


Возвращаемся к нашему примеру.

По выполненным выше результатам расчета освещенности Фл = 1246 Лм, то есть каждая лампа нашего светильника должна быть мощностью 1246 Лм.

Теперь выполним подбор ламп:

  1. Первым пунктом стоит определить какие лампы могут дать световой поток максимально приближенный к расчетному 1246 Люмен. Для этого воспользуемся таблицами №9-14.

Смотрим:

  •  таблица №9 – лампа накаливания с прозрачным стеклом, теплого света 2700 К, мощностью 95 Вт – 1300 Лм

  • таблица №10 – лампа накаливания с матовым стеклом, теплого света 2700 К, мощностью 95 Вт – 1290 Лм

  • таблица №11 галогенная лампа, теплого света 3000 К, мощностью 75 Вт – 1125 Лм

  • таблица №12 компактная люминесцентная лампа (КЛЛ), 2700 К - теплого света мощностью 20 Вт – 1170 Лм,

  • таблица №13 светодиодная лампа, 3000 К - теплого света мощностью 12 Вт – 1170 Лм,

  • таблица №14 светодиодная лампа, 4500 К - белого света – значение соответствующее расчетному отсутствует.
  1. Следующим пунктом смотрим конструктивные ограничения светильника, в нашем случае люстры. Как правило это наклейка, на которой заводом изготовителем отображена техническая информация устройства. Ниже приведен пример:

  • марка (YMP9439)
  • напряжение и частота (2230V – 50Hz)
  • цоколь и максимальная мощность лампы (Е27, Max. 60W)
  • производитель (Made in P.R.C.)

Нас интересует третий пункт, с цоколем все понятно, а вот максимальная мощность лампы (Max. 60W) является существенным ограничением по использованию в светильнике ламп освещения. Допустим, что люстра в нашем примере имеет аналогичные изображенной на картинке выше характеристики.

Максимальная мощность как правило указывается в эквиваленте ламп накаливания, то есть максимальная лампа накаливания которую можно использовать в патроне данного светильника 60 Вт. Обусловлено это тем, что большинство патронов современных светильников изготавливаются из различного рода пластмассовых композиций, которые ограничены по температуре нагрева.

Лампы накаливания и галогенные лампы преобразуют электрическую энергию не только в видимый световой поток (около 60 %), но еще и в тепловую энергию (порядка 40%), поэтому в нормальном эксплуатационном режиме происходит достаточно сильный нагрев стеклянного корпуса и металлического цоколя лампы. На практике максимально разрешенная лампа под воздействием тепла издает неприятный запах горелой пластмассы, поэтому не желательно использовать максимальный номинал.

Исходя из конструктивных характеристик нашей люстры делаем выбор из ламп не подверженные сильному нагреву:

  • светодиодные лампы, холодного и теплого света (вариант подороже)
  • компактные люминесцентные лампы холодного и теплого света (более дешевый вариант)

Для нашего примера мы выбрали светодиодные лампы, теплого света (3000 К), характеристики данных ламп приведены в таблице №13. Максимально близкими к расчетному значению (1246 Лм) будет лампа мощностью 12 Вт – 1170 Лм.

Итог: Согласно расчетам, чтобы выполнить освещение комнаты площадью 19,25 метров пяти рожковой люстрой нам потребуется 5 светодиодных ламп мощностью 12 Вт, световым потоком 1170 Лм.

Суммарная потребляемая мощность люстры составит 12 * 5 = 60 Вт.

Суммарный световой поток 1170 * 5 = 5850 Лм.

Как выбрать идеальную настольную лампу

По мере того, как вы углубитесь в украшение своего дома, вы поймете, что именно крошечные детали в конечном итоге имеют наибольшее значение. Хотя стиль, тема и цветовая схема комнаты определяют ее, именно освещение в конечном итоге задает настроение и создает атмосферу по вашему выбору. Фактически, простое изменение освещения может полностью изменить атмосферу комнаты и превратить ее из унылой, скучной комнаты в уютное, манящее уединение или даже в веселый и захватывающий центр! Некоторые светильники сочетают в себе неподвластный времени шарм, современное очарование и интеллектуальную функциональность, как, например, прекрасная настольная лампа .

В мире, где доминируют потрясающие люстры, удивительно креативные подвесные светильники и смелые торшеры, старая добрая настольная лампа может показаться менее изысканным выбором. Но не стоит недооценивать ценность прочной и элегантной настольной лампы. При правильном использовании настольная лампа может привнести симметрию, цвет, контраст, текстуру и, конечно же, освещение в любую комнату, которую она украшает. И сегодня мы рассмотрим , как купить подходящую настольную лампу , которая предлагает все необходимое и многое другое -

1.В поисках подходящего места

Начните с определения того, где вы хотите поставить настольную лампу, и отметьте точную высоту, на которой она будет располагаться, а также расстояние до кровати, дивана или уютного кресла рядом с ней. Начинать с покупки настольной лампы, а затем пытаться разместить ее в спальне или гостиной - не самая лучшая идея. Хотя это может сработать, если вам повезет, часто лампа оказывается слишком короткой, высокой или яркой для комнаты. Кроме того, вам может не понадобиться, чтобы прикроватная настольная лампа была такой же яркой, как та, которая стоит на тумбочке в гостиной! Итак, четко определите предназначение лампы, прежде чем начинать ее покупать.

Нанесите мелом точное место для настольной лампы, прежде чем покупать ее [Дизайн: Sullivan + Associates Architects] Обои и настольные лампы добавляют гео-стиль [Дизайн: Malcolm Duffin Interior Design] Промышленная кухня с большими уникальными настольными лампами [ Дизайн: Jarrett Design]

2. Определение размеров

Это сложный момент, когда вы выбираете новую настольную лампу. Высота выбранной вами настольной лампы больше зависит от комнаты, в которой она находится, и от декора вокруг лампы.Если у вас высокая прикроватная тумбочка, то, разумеется, подойдет и более короткий светильник, и наоборот. Общая норма здесь - выбирать лампу так, чтобы нижняя часть абажура находилась на уровне ваших глаз, когда вы сидите или отдыхаете. Это работает независимо от того, покупаете ли вы настольную лампу, подходящую для вашего уголка для чтения, лампу рядом или даже такую, которая ставится рядом с диваном в гостиной.

.

Как выбрать торшер

Всегда внимательные, торшеры - незаменимые герои любой схемы освещения, они обеспечивают столь необходимое освещение в самых разных комнатах без трудоемкой установки.

Предлагая как широкое окружающее освещение, так и прямое рабочее освещение, торшеры достаточно универсальны, чтобы соответствовать любому настроению, которое вы собираетесь создать в помещении. Но найти лучший по-прежнему может быть непросто. Читайте дальше, чтобы узнать, на что обращать внимание при поиске идеального торшера.

Типы торшеров

Общая установка торшера проста: прочное основание, устойчиво стоящее на полу; высокий стебель, идущий от основания; и свет, который может быть прямым или рассеянным. В то время как голые кости остаются прежними, торшеры бывают разных стилей, каждый из которых имеет свои уникальные функциональные преимущества.

Светильники окружающего освещения

Самый распространенный тип торшеров, торшеры рассеянного света, предназначены для общего освещения пространства.Они увенчаны традиционным абажуром, который рассеивает свет для полупрямого освещения, что делает их идеальным выбором для угла гостиной или рядом с удобным диваном или креслом. Обычно они обеспечивают достаточно света для чтения поблизости, хотя и не столь сфокусированного, как свет от лампы для чтения, но об этом позже.

Торшеры для чтения

Торшер для чтения обеспечивает более прямой сфокусированный свет, чем другие типы торшеров. Если вы ищете лампу, чтобы украсить ваш любимый уголок, рабочий стол или место, где вы выполняете другие повседневные задачи, лампа для чтения обычно будет более ярким освещением для пространства прямо под ней.Для большей универсальности ищите лампу для чтения с регулируемым абажуром, гибким кронштейном или другими возможностями регулировки, чтобы вы могли перемещать свет именно туда, где вам нужно.

Светильники Uplight и Torchiere Торшеры

Торшеры-торшеры, похожие по структуре на традиционные абажуры, отличаются направленными вверх плафонами. Уникальное направление этого стиля тени делает свет более акцентным, чем окружающее или рабочее освещение, и может добавить размера углам и стенам с помощью восходящего освещения.

Дуговые торшеры

В то время как стандартные торшеры остаются неподвижными в любом месте, дуговые торшеры могут предложить немного больше возможностей. Сочетая в себе лампу для чтения и торшер, дуговые лампы имеют шток, который выдвигается вверх и наружу. Когда ножка регулируется, вы можете перемещать штору прямо над пространством, чтобы освещать его более прямо, что делает его идеальным для рабочего освещения, например чтения на стуле или работы за столом. Другие дуговые лампы могут дублировать эффект верхнего света, растягиваясь вверх и над пространством, поэтому их можно использовать над переговорными пространствами в гостиной или даже над обеденным столом.

Другие соображения при выборе торшера

Очевидно, что каждый торшер имеет свой неповторимый эстетический вид. Важно выбрать торшер, который не только хорошо выглядит для вас, но и соответствует пространству, в котором вы собираетесь его поставить. Иногда торшер отлично смотрится на фотографиях, но важно учитывать масштаб и то, как лампа будет выглядеть. в вашем конкретном пространстве. Вот что нужно иметь в виду:

Стоимость

Стоимость торшеров может сильно варьироваться от недорогих чисто функциональных моделей до тысяч долларов за художественные или дизайнерские изделия.Как правило, чем сложнее эстетически или желательно название, тем дороже будет изделие. Но природа торшера часто означает, что фантастический дизайн может стать произведением искусства для комнаты, в которой он находится.

Размер

Размер также может немного отличаться. Затененные или торшерные лампы, хотя и высокие, занимают мало места из-за своей вертикальной ориентации, что позволяет легко вписаться в окружающее пространство. Между тем, дуговые торшеры занимают больше места за счет своей горизонтальной протяженности.Очень важно знать, сколько места у вас должно быть для торшера, чтобы вы могли заранее подобрать подходящий размер.

Если вы смотрите на лампу с основанием для штатива, убедитесь, что на полу и в окрестностях достаточно места, чтобы лампа не была тесной или в нее постоянно наезжали.

Высота

Высота - еще один фактор, который необходимо учитывать. Чем выше источник света, тем шире распространяется свет. Это отлично подходит для окружающего освещения, но может быть менее идеальным для рабочего освещения, когда вы хотите, чтобы свет был ближе и более сфокусированным, но не мешал, чтобы вы не ударяли головой, когда сидите рядом с ним.

Также учитывайте масштаб всего остального в комнате - если вы предпочитаете низкую мебель на платформе, убедитесь, что выбранная вами лампа не будет карикатурно возвышаться над всем этим. Некоторые торшеры поставляются с регулируемой высотой, что может быть удобно, если вы склонны часто менять предметы.

Наконец, выберите торшер, который позволяет скрыть источник света за пределами уровня ваших глаз, чтобы избежать неприятного ослепления. Поэтому, если вы стоите рядом, источник света лампы должен быть закрыт плафоном.

Выберите слой напольного освещения

Пожалуй, самое главное, выбрать торшер следует исходя из того, какой тип освещения нужен комнате. Чтобы принять решение, посмотрите на три ключевых слоя света: окружающий, задача и акцент. Возможно, вам нужно теплое окружающее освещение, которое может обеспечить множество затемненных торшеров. Или, может быть, вам просто нужно какое-то прямое освещение для освещения вашего кресла для чтения, и в этом случае дугообразная лампа для чтения будет идеальной. Или, возможно, фонарик, чтобы украсить угол и добавить акцентного освещения.Стиль света, который излучает торшер, также должен влиять на его размещение, поэтому убедитесь, что вы выбрали правильный предмет для помещения.

Без лишних слов, слово ваше.

.

Как выбрать правильную УФ-лампу для ваших потребностей в неразрушающем контроле [Контрольный список]

Изучите четыре основных момента, которые следует учитывать при поиске новой УФ-лампы для флуоресцентных пенетрантных тестов или магнитопорошкового контроля.

Дэвид Гейс, менеджер по продукту

Промышленность общего освещения приняла светодиоды как предпочтительную технологию по сравнению с лампами накаливания и люминесцентными лампами из-за большей гибкости и меньшего количества проблем с безопасностью. Тем не менее, сообщество по неразрушающему контролю отстает от внедрения светодиодов из-за особых требований к освещению и проблем, связанных с флуоресцентными методами, такими как проникающая жидкость или проверка магнитных частиц.

В связи с тем, что в последние годы истек срок действия нормативных требований для неразрушающего контроля, а также благодаря достижениям в технологии и производстве светодиодов, высокоинтенсивные светодиодные источники света УФ-А теперь являются идеальным решением для профессионалов неразрушающего контроля.

Хотя гибкость является одним из основных преимуществ светодиодной технологии для неразрушающего контроля, это также означает, что для определения правильных характеристик неразрушающего контроля требуется больше деталей. Чтобы лампа могла использоваться при флуоресцентном проникающем контроле или контроле магнитных частиц, необходимо учитывать множество факторов.

1. Пиковая длина волны и спектр излучения

Пиковая длина волны - самый важный фактор при выборе светодиодной лампы для люминесцентного контроля.

Когда были созданы формулы для пенетрантов и материалов с магнитными частицами, источником УФ-А по умолчанию были пары ртути, которые производили единственный пик УФ-А при 365,4 нм, линию элементарного излучения ртути. Следовательно, все флуоресцентные пенетранты и материалы с магнитными частицами настроены на флуоресценцию в УФ-А на длине волны 365 нм.

Для светодиодов пиковая длина волны может изменяться и зависит от отдельных светодиодов, используемых при производстве УФ-лампы. Чтобы убедиться, что светодиодная УФ-лампа производит флуоресценцию в проникающих веществах и материалах с магнитными частицами, светодиоды должны иметь максимальную длину волны в диапазоне 360–370 нм.

Также важно учитывать спектр излучения УФ-А, поскольку излучение УФ-А светодиода намного шире, чем излучение паров ртути. В конце спектра присутствует некоторое излучение в диапазоне видимого света выше 400 нм, которое можно наблюдать как глубокий фиолетовый свет от лампы.Контроль флуоресцентным пенетрантом и магнитными частицами проводится в темноте для увеличения контраста, а загрязнение в видимом свете ухудшит качество контроля. Для проверок на соответствие аэрокосмическим спецификациям, таким как ASTM E3022, Nadcap AC7114 и Rolls-Royce RRES , эти темно-фиолетовые блики неприемлемы. По этой причине любая лампа, используемая для аэрокосмической инспекции, такая как EV6000, должна включать пропускающий фильтр UV-A для блокировки видимого излучения.

Узнайте больше о том, почему ASTM E3022 требует пропускного фильтра UV-A.

2. Профиль луча и рабочее расстояние

Со светодиодными лампами вы не ограничены одной конфигурацией для выполнения всех проверок неразрушающего контроля. Лампы могут быть разработаны для конкретных применений и целей.

Лампы, предназначенные для осмотра крупным планом, будут иметь интенсивное сфокусированное пятно, но небольшую площадь луча. Площадь луча светодиодной лампы UV-A - это мера того, какая площадь поверхности превышает минимальную мощность излучения 1000 мкВт / см2, необходимую для проверки. Чтобы получить широкую область луча, необходим массив светодиодов.

Однако, если матрица используется слишком близко к проверяемой поверхности, в результате образуются яркие и тусклые пятна. Это компромисс между рабочим расстоянием и площадью луча.

Лампы с небольшой площадью луча полезны для осмотра труднодоступных мест, таких как отверстия, сварные соединения и внутренние поверхности. Но при использовании на больших конструкциях малый луч может создать «туннельное зрение», когда инспектор фокусируется на одной области, а указатели за пределами зоны луча можно легко пропустить.

Лампа с большой площадью луча будет обеспечивать УФ-А излучение периферийной области инспекции. Это позволяет инспектору быстро находить и идентифицировать флуоресцентные индикаторы в периферийной области для более тщательного изучения.

Рабочее расстояние светодиодной лампы UV-A - это минимальное расстояние, необходимое для равномерного покрытия.

При размещении очень близко к поверхности отдельные светодиоды в матрице будут излучать отдельные лучи с тусклыми областями между ними. Такое неравномерное покрытие ухудшает качество проверки и может привести к пропущенным показаниям.Но когда лампа отодвигается от поверхности, лучи отдельных светодиодов сливаются в гладкий ровный профиль.

Осмотр следует проводить только в том случае, если лампа расположена дальше минимального рабочего расстояния.

Ознакомьтесь с ассортиментом светодиодных УФ-ламп Magnaflux для неразрушающего контроля.

3. Источник питания

Светодиодная лампа UV-A, работающая от низкого напряжения, может работать от аккумулятора в течение нескольких часов. Это делает лампу очень портативной, а полевые проверки становятся быстрыми и простыми.

Однако есть проблема с лампами с батарейным питанием, потому что интенсивность светодиода напрямую связана с напряжением питания и током. При использовании батареи напряжение и ток падают, образуя характерную кривую разряда. В случае светодиодной лампы УФ-А это может привести к снижению интенсивности со временем, в конечном итоге упав ниже минимальных требований в 1000 мкВт / см 2 .

Лампы

Advanced содержат цепи постоянного тока, контролирующие разряд аккумулятора. Эти лампы автоматически выключаются, если они не могут поддерживать минимальную интенсивность 1000 мкВт / см 2 .Знание типа аккумулятора и кривой разряда важно для обеспечения контроля качества светодиодных УФ-ламп с батарейным питанием.

4. Требования к сертификации

В разных отраслях промышленности существуют разные требования к проверкам и допуски.

В аэрокосмической отрасли неразрушающего контроля, включая флуоресцентный пенетрант и контроль магнитных частиц, есть спецификации высокого уровня по всем аспектам процесса. После пяти лет исследований в ASTM E3022 были установлены аэрокосмические требования к светодиодным УФ-лампам.Этот стандарт обеспечивает производителям ламп базовые характеристики для использования при проверке люминесцентных ламп.

Светодиодная УФ-лампа, сертифицированная производителем согласно ASTM E3022, как и ручная УФ-лампа EV6000, приемлема для использования всеми авиакосмическими компаниями и производителями оригинального оборудования и соответствует критериям аудита Nadcap. Однако эти требования применяются только к лампам, используемым для окончательной аэрокосмической инспекции. Лампы, используемые в других местах технологического процесса, например, на станциях промывки или ополаскивания пенетрантами, обычно не требуют полной сертификации ASTM E3022.

Для неавиационно-космических отраслей, таких как сварка, энергетика, трубопроводный контроль или полевые проверки, существует меньше требований к сертификации. Более жесткие промышленные проверки часто проводятся в неидеальных условиях, поэтому требуется более интенсивное УФ-А, чтобы флуоресцентные индикаторы были видны. Однако исследования показали, что интенсивность УФ-А выше 10 000 мкВт / см 2 на расстоянии 15 дюймов / 38 см может вызывать выцветание флуоресцентных красителей и пигментов.

Светодиодная лампа для промышленного применения, такая как недавно выпущенная двойная УФ-лампа EV6500, должна включать сертификат соответствия производителя, который включает максимальную интенсивность УФ-А, регулируемую ниже 10 000 мкВт / см. 2 .Сертификат также должен включать максимальную длину волны в диапазоне 360–370 нм, чтобы гарантировать, что лампа имеет правильный спектр излучения для индукции флуоресценции.

Узнайте о нашей стационарной светодиодной УФ-лампе для неразрушающего контроля.

Светодиодные лампы

являются ценным достижением в области неразрушающего контроля, обеспечивая большую гибкость в конструкции и применении, а также повышенную безопасность. Однако при выборе подходящей светодиодной лампы УФ-А для флуоресцентного контроля необходимо учитывать множество факторов.При использовании светодиодных ламп необходимо учитывать такие факторы, как спектр излучения, площадь луча и источник питания. Требования к сертификации также важны для аэрокосмической и других отраслей с высокими техническими характеристиками.

Внимательно изучив свои потребности в тестировании, прежде чем вкладывать средства в светодиодную УФ-лампу, специалисты по неразрушающему контролю могут быть уверены, что получают правильный инструмент, который поможет сделать их флуоресцентные пенетрантные тесты и проверки магнитных частиц быстрее и эффективнее.

Опубликовано 18 апреля 2017 г.

.Руководство по покупке лампочек

: как выбрать светодиоды, КЛЛ - даже WiFi Smart Lights

У каждой лампочки есть свои плюсы и минусы, и определенные лампы лучше работают в разных помещениях дома. В нашем руководстве по покупке светильников мы подробнее рассмотрим различные лампы, чтобы понять, где их следует использовать.

LED расшифровывается как «светоизлучающий диод». Эта технология освещения чрезвычайно энергоэффективна, и в наши дни вы, скорее всего, найдете ее в магазине.Светодиоды могут обеспечивать как направленный, так и рассеянный свет, что делает их идеальными для освещения под столешницей, а также для общего освещения комнаты. Цены конкурентоспособны с большинством других энергоэффективных технологий, но светодиоды по-прежнему дороже, чем многие специальные лампы накаливания, такие как ночники и осветительные приборы. Хотя эти лампы обычно служат дольше, чем лампы накаливания, нерегулируемые лампы могут перегорать быстрее в областях с частыми колебаниями мощности. Таким образом, вы можете на всякий случай ошибиться и купить лампы с регулируемой яркостью.Кроме того, теперь вы можете найти светодиодные лампы с поддержкой Wi-Fi, которые работают с Google Home, Alexa и другими «умными» устройствами, которые позволяют увеличивать и уменьшать яркость света - и даже изменять их цвет - просто говоря.

Компактные люминесцентные лампы (КЛЛ) потребляют четверть энергии, чем лампы накаливания, и служат в 10 раз дольше. В отличие от старых люминесцентных ламп, люминесцентные люминесцентные лампы тихие, мгновенно включаются и имеют более теплые тона с коррекцией цвета. Их можно использовать везде, где вы бы использовали обычную лампочку накаливания.КЛЛ содержат следовые количества ртути, вредного вещества. Хотя в лампах содержится гораздо меньше ртути, чем в других предметах домашнего обихода, необходимо соблюдать осторожность, чтобы не допустить поломки. Также, когда КЛЛ перегорают, их следует утилизировать.

.

Смотрите также