Как проверить автоматический выключатель на срабатывание


Как проверить исправность автоматического выключателя при покупке

Вступление

Проверить исправность автоматического выключателя при покупке задача не из простых. Вы не сможете воспользоваться никакими контрольно измерительными приборами и единственно доступный способ определить исправность, или лучше сказать подлинность автомата защиты это визуальный осмотр.

Лабораторная проверка и проверка автоматов защиты по месту

Точная проверка работоспособности автоматического выключателя возможна только в лаборатории на стандартном тестовом оборудовании. Называется такая проверка – прогрузка.

В лаборатории можно точно проверить автомат защиты по трем основным характеристикам:

  • Номинальному току работы;
  • Току, при котором срабатывает защита;
  • Времени защитного срабатывания при перегрузке (уставка теплового расцепителя)  и коротком замыкании (уставка электромагнитного расцепителя).

Лабораторная (точная) проверка автоматических выключателей делается перед их монтажом, в специализированных лабораториях и стоит денег.

По понятным причинам, лабораторная проверка автоматического выключателя делается в исключительных случаях и уж точно не подходит для проверки выключателя при покупке.

Есть более простая технология проверки автоматов, это тестовая прогрузка автоматического выключателя. Она делается или вернее, должна делаться, перед установкой автомата защиты в электрический щиток. Для местечковой подгрузки автоматов защиты выпускаются специальные подгрузочные устройства.

Если вы делаете электрику своими руками, то для спокойного сна, можно взять в аренду подгрузочное устройство и проверить подгрузкой  все автоматы защиты своего электрического щита квартиры или дома (коттеджа).

Но опять-таки, этот вид проверки автомата защиты не подходит для проверки автомата при покупке. Что же делать?

При покупке автомата защиты придется довольствоваться визуальной и механической проверкой автомата.

Кстати, не стоит быть параноиком и думать, что большинство автоматов защиты потенциально неисправны. Это же относится к «умным» советам в Интернет, что автоматы такой фирмы  «га-но», а вот эти просто класс. Все это бред. Бракованные автоматы могут быть любой фирмы.

Нет никакой гарантии, что купленный дорогой, шведский автомат ABB, будет на 100% исправным и выдержит, заявленные, 2000 срабатываний.

У меня в доме 10 лет назад бесплатно установили автоматы ИЭК, была такая программа, за это время срабатывали раз 20-30, и я не вижу причин их менять.

Нормативная ссылка

ГОСТ Р 50345-2010: Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения. (Скачать напрямую в формате DOC)

Как проверить исправность автоматического выключателя при покупке без контрольных приборов

  • Посмотрите нанесение маркировки на корпус автомата. Она должна быть явно заводской и четко различимой;
  • Проверьте правильность маркировки: название фирмы производителя должно быть написано латинскими буквами и точно соответствовать (побуквенно) логотипу производителя;

Например, маркировка автоматов фирмы ИЭК ранее наносилось русскими буквами. Такое обозначение устарело. С 2006 года автоматы этого производителя маркируются IEK. Отсюда вывод. Видим при покупке на автомате ИЭК, а не IEK, значит автомат старой партии. Или вместо ABB видим ABBB явная подделка.

  • Проверьте автомат на вес. Поддельные автоматы легче «родных»;
  • Взведите автомат рукой и после отключите его. При отключении должен быть характерный щелчок.

Хочется отметить, что чаще всего я читал о подделке автоматов защиты ИЭК (IEK). Поэтому приведу отличительные признаки настоящего автомата защиты ИЭК.

Проверка автомата защиты IEK на подлинность

Вес автомата ИЭК;

  • ИЭК ВА 47-29 — 87 гр.
  • ИЭК ВА 47-29М вес 97 гр.
  • ИЭК ВА 47-60 вес 105 гр.

Для сравнения: Пачка сигарет весит 22-23 грамма. Тонкий смартфон-130-140 грамм, «толстый» смартфон весит 170-180 горамм.

Маркировка ИЭК обязательно латинская IEK;

Старая маркировка автомтов защиты ИЭК

Цвет полоски под логотипом IEK должен точно совпадать с цветом рычага взвода;

Новая, правильная маркировка автомата защиты ИЭКВелика вероятность поддельности автомата ИЭК

На корпусе должна быть нанесена информация об автомате и адрес сайта производителя методом штамповки;

Надписи и схема автомата должны четко просматриваться на фасадной части корпуса.

Выводы

К сожалению, выводы неутешительны. Визуально проверить исправность автоматического выключателя при покупке на 100% нельзя. Но это не значит, что этого не нужно делать. Обязательно покупайте автоматические устройства электроцепей в специализированных магазинах, исключите хозяйственные и гипермаркеты. При покупке произведите визуальный осмотр автомата и по явным признакам, описанным в этой статье, проверьте автомат на подлинность.

©Ehto.ru

Статьи по теме

  • Записи не найдены

Похожие посты:

  • Автоматы защиты, зачем они нужны, Рубрика Защита электрики
  • Расчет автоматов защиты, Рубрика Защита электрики
  • Плавкие предохранители: описание, назначение, типы, Рубрика Защита электрики
  • Основные электрические опасности в доме, Рубрика Защита электрики
  • УЗО противопожарной защиты, Рубрика УЗО
  • Назначение УЗО, Рубрика УЗО
  • Про УЗО простыми словами, Рубрика УЗО

Что такое испытание автоматических выключателей и как это делается

Служба калибровки и термографического контроля

Переключить меню

перейти к содержанию
  • Дом
  • ОБЯЗАННОСТИ ПО УХОДУ
  • Услуги
    • Испытания
      • Испытания электрического низкого напряжения
        • Тест автоматического включения резерва
        • Тест батареи конденсаторов
        • Коммерческие электрические испытания
        • Тест сопротивления контактов
        • Проверка сопротивления контура замыкания на землю
        • Earth Ground Test
        • Испытание на электробезопасность
        • Тест банка нагрузки генератора
        • Испытание сопротивления изоляции
        • Испытание грозозащиты
        • Тест портативного устройства
        • Заводские приемочные испытания
        • Тест защитных устройств
        • Тест мегомметра
        • Live Test
        • Проверка целостности
        • Испытания и безопасность УЗО
        • Тест PSC и тест PFC
        • Заводские приемочные испытания
        • Испытание распределительного устройства
      • Испытания сверхнизкого напряжения
        • Тест батареи
      • Испытания среднего напряжения
        • Тест реле защиты
    • Калибровка
      • Калибровка температуры и влажности
.Метод испытания выключателя

- Типы и текущие испытания

Испытание выключателя сложнее по сравнению с другим электрическим оборудованием, таким как трансформатор или машина, поскольку ток короткого замыкания очень велик. Испытания трансформатора в основном делятся на две группы: типовые испытания и стандартные испытания.

Типовые испытания выключателя

Типовые испытания

проводятся с целью проверки возможностей и подтверждения номинальных характеристик автоматического выключателя.Такие испытания проводятся в специально построенной испытательной лаборатории. Типовые испытания можно в целом разделить на испытания на механические характеристики, тепловые испытания, испытания на диэлектрические или изоляционные свойства, испытания на короткое замыкание для проверки включающей способности, отключающей способности, кратковременного номинального тока и рабочего режима. .

Механическое испытание - Типовое испытание на механическую способность, включающее многократное размыкание и замыкание выключателя. Автоматический выключатель должен размыкаться и замыкаться с правильной скоростью и выполнять свои предписанные обязанности и работать без механических повреждений.

Thermal Test - Тепловые испытания проводятся для проверки теплового поведения автоматических выключателей. Испытуемый выключатель выдерживает установившееся повышение температуры из-за протекания его номинального тока через полюс в номинальном состоянии. Превышение температуры для номинального тока не должно превышать 40 ° для тока менее 800 А при нормальном токе и 50 ° для нормального значения тока 800 А и выше.

Диэлектрический тест - Эти испытания выполняются для проверки выдерживаемой частоты промышленной частоты и импульсного напряжения.Испытания промышленной частоты проводятся на новом автоматическом выключателе; испытательное напряжение изменяется в зависимости от номинального напряжения выключателя.

Испытательное напряжение с частотой 15–100 Гц прикладывают следующим образом. (1) между полюсами при замкнутом автоматическом выключателе (2) между полюсом и землей при разомкнутом автоматическом выключателе и (3) между выводами при разомкнутом автоматическом выключателе.

При импульсных испытаниях на выключатель подается импульсное напряжение заданной величины. Для наружного контура проводятся сухие и влажные испытания.

Испытание на короткое замыкание - Автоматические выключатели подвергаются внезапным коротким замыканиям в лабораториях для испытаний на КЗ, и для определения поведения автоматических выключателей во время включения, во время размыкания контактов и после дуги снимаются осциллограммы. вымирание.

Осциллограммы изучаются с особым вниманием к включающим и отключающим токам, как симметричным, так и асимметричным напряжениям перезапуска, а распределительное устройство иногда испытывается при номинальных условиях.

Текущие испытания выключателя

Стандартные испытания также выполняются в соответствии с рекомендациями стандартов Индийской инженерной службы и индийских стандартов. Эти испытания проводятся на территории производителей. Регулярные испытания подтверждают правильное функционирование автоматического выключателя. Стандартные испытания подтверждают правильное функционирование автоматического выключателя.

Испытание напряжением промышленной частоты такое же, как указано в разделе «Типовые испытания», испытание на падение напряжения в милливольте выполняется для определения падения напряжения на пути тока механизма выключателя.Эксплуатационная проверка выключателя выполняется путем моделирования его отключения путем искусственного замыкания контактов реле.

.Тестирование автоматических выключателей

- OMICRON

Автоматические выключатели выполняют три основные задачи: В замкнутом состоянии они должны проводить ток с максимальной эффективностью. В разомкнутом состоянии они должны максимально эффективно изолировать контакты друг от друга. В случае неисправности они должны отключать ток повреждения как можно быстрее и надежнее, тем самым защищая все последующее оборудование. На рынке США и в регионах с частыми землетрясениями наиболее популярными высоковольтными выключателями являются блоки с «мертвым баком», тогда как в Центральной Европе выключатели с «живым баком» являются стандартными.В других частях света можно найти выключатели обоих типов.

В худшем случае автоматический выключатель может простаивать несколько лет, но затем, в случае неисправности, он должен надежно отключать токи короткого замыкания в несколько килоампер всего за несколько миллисекунд. Типичные неисправности автоматических выключателей - это короткие замыкания катушек, неправильное поведение, например, из-за изношенных контактов, а также повреждение / износ механических соединений или изоляционного материала.Следовательно, автоматические выключатели необходимо регулярно и тщательно проверять.

Испытания выключателей обычно фокусируются на измерении движения и времени на устройствах. Однако наши решения для тестирования произвели революцию в тестировании автоматических выключателей. Предлагаемые нами решения для тестирования включают системы, которые могут подавать питание во время процесса тестирования и могут измерять сопротивление в микроомах на замкнутых контактах. Выполнение тестов без использования аккумуляторной батареи значительно повышает безопасность всего процесса тестирования.

.

Основные характеристики выключателя

Основные характеристики автоматического выключателя:

  • Его номинальное напряжение Ue
  • Его номинальный ток In
  • Диапазон регулировки уровня тока срабатывания для защиты от перегрузки (Ir [1] или Irth [1] ) и для защиты от короткого замыкания (Im) [1]
  • Его номинальный ток отключения при коротком замыкании (Icu для промышленных выключателей; Icn для выключателей бытового типа).

Номинальное рабочее напряжение (Ue)

Это напряжение, при котором автоматический выключатель рассчитан на работу в нормальных (невозмущенных) условиях.

Автоматическому выключателю также присваиваются другие значения напряжения, соответствующие возмущенным условиям, как указано в разделе «Другие характеристики автоматического выключателя».

Номинальный ток (In)

Это максимальное значение тока, которое автоматический выключатель, оборудованный указанным реле максимального тока, может выдерживать неопределенное время при температуре окружающей среды, указанной производителем, без превышения указанных температурных пределов токоведущих частей.

Пример

Автоматический выключатель, рассчитанный на In = 125 A для температуры окружающей среды 40 ° C, будет оснащен соответствующим образом откалиброванным реле максимального тока (настроено на 125 A). Однако тот же автоматический выключатель может использоваться при более высоких значениях температуры окружающей среды, если он соответствующим образом «понижен». Таким образом, автоматический выключатель при температуре окружающей среды 50 ° C может выдерживать только 117 А в течение неограниченного периода времени или, опять же, только 109 А при 60 ° C, при соблюдении указанного температурного предела.

Таким образом, снижение номинальных параметров автоматического выключателя достигается за счет уменьшения уставки тока отключения его реле перегрузки и соответствующей маркировки выключателя.Использование отключающего устройства электронного типа, разработанного, чтобы выдерживать высокие температуры, позволяет автоматическим выключателям (со сниженными номинальными характеристиками) работать при температуре окружающей среды 60 ° C (или даже 70 ° C).

Примечание. In для автоматических выключателей (в IEC 60947-2) обычно равно Iu для распределительного устройства, Iu - это номинальный непрерывный ток.

Типоразмер рамы

Автоматическому выключателю, который может быть оснащен расцепителями максимального тока с различными диапазонами настройки уровня тока, назначается номинал, который соответствует максимальному устройству отключения с настройкой уровня тока, которое может быть установлено.

Пример

Автоматический выключатель Compact NSX630N может быть оснащен 11 электронными расцепителями от 150 до 630 А. Номинальный ток автоматического выключателя составляет 630 А.

Уставка тока срабатывания реле перегрузки (Irth или Ir)

Помимо небольших автоматических выключателей, которые очень легко заменяются, промышленные автоматические выключатели оснащены съемными, т. Е. Заменяемыми реле максимального тока. Более того, чтобы адаптировать автоматический выключатель к требованиям цепи, которую он контролирует, и избежать необходимости прокладки кабелей слишком большого размера, реле отключения обычно регулируются.Уставка тока срабатывания Ir или Irth (обычно используются оба обозначения) - это ток, выше которого сработает автоматический выключатель. Он также представляет собой максимальный ток, который автоматический выключатель может выдерживать без отключения. Это значение должно быть больше максимального тока нагрузки IB, но меньше максимально допустимого тока в цепи Iz (см. Главу «Размеры и защита проводов»).

Реле теплового срабатывания обычно регулируются в пределах от 0,7 до 1,0 от In, но когда для этого используются электронные устройства, диапазон регулировки больше; обычно 0.4 к 1 разу В.

Пример

(см. рис. h37)

Автоматический выключатель NSX630N, оборудованный реле максимального тока Micrologic 6.3E на 400 А, установленным на 0,9, будет иметь уставку тока отключения:

Ir = 400 x 0,9 = 360 А

Примечание: Для автоматических выключателей, оборудованных нерегулируемыми реле максимального тока, Ir = In. Пример: для автоматического выключателя iC60N на 20 А,

Ir = In = 20 А.

Рис. H37 - Пример автоматического выключателя Compact NSX630N с номиналом 400 А от Micrologic, настроенным на 0.9, чтобы получить Ir = 360 A

Уставка тока срабатывания реле короткого замыкания (Im)

Реле отключения при коротком замыкании (мгновенного действия или с небольшой выдержкой времени) предназначены для быстрого отключения выключателя при возникновении высоких значений тока повреждения. Их порог срабатывания Im равен:

  • Либо фиксируется стандартами для отечественных выключателей, например IEC 60898 или
  • Указано производителем для автоматических выключателей промышленного типа в соответствии с соответствующими стандартами, в частности, IEC 60947-2.

Для последних автоматических выключателей существует большое количество отключающих устройств, которые позволяют пользователю адаптировать защитные характеристики автоматического выключателя к конкретным требованиям нагрузки (см. Рис. h38, Рис. h39 и Рис. h40).

Рис. H38 - Диапазоны тока отключения устройств защиты от перегрузки и короткого замыкания для выключателей низкого напряжения

Тип реле защиты Защита от перегрузки
Защита от короткого замыкания
Бытовые выключатели IEC 60898 Термомагнитный Ir = In Низкое значение
тип B
3 In ≤ Im ≤ 5 In
Стандартная настройка
тип C
5 In ≤ Im ≤ 10 In
Цепь высокой уставки
тип D
10 In ≤ Im ≤ 20 In [a]
Модульные промышленные автоматические выключатели [b] Термомагнитный Ir = In
фиксированный
Низкая настройка
тип B или Z
3.2 In ≤ фиксированный ≤ 4,8 дюйма
Стандартная настройка
тип C
7 In ≤ фиксированный ≤ 10 In
Высокая уставка
тип D или K
10 In ≤ фиксированная ≤ 14 In
Промышленные выключатели [b]

IEC 60947-2

Термомагнитный Ir = фиксированный Фиксированное: Im = от 7 до 10 дюймов
Регулируемый:
0,7 In ≤ Ir ≤ In
Регулируемый:
  • Низкое значение: от 2 до 5 дюймов
  • Стандартная настройка: от 5 до 10 дюймов
Электронный Длительная задержка
0. 1 2 Для промышленного использования стандарты IEC не определяют значения. Вышеуказанные значения даны только как общеупотребительные.

Рис. H39 - Кривая отключения термомагнитного выключателя

Ir : уставка тока срабатывания реле перегрузки (тепловая или с большой задержкой)
Im : уставка тока срабатывания реле короткого замыкания (магнитная или короткая задержка)
Ii : срабатывание мгновенного реле короткого замыкания- текущая настройка.
Icu : Отключающая способность

Рис. H40 - Кривая отключения автоматического выключателя с усовершенствованным электронным расцепителем

Автоматический выключатель с изоляцией

Автоматический выключатель пригоден для разъединения цепи, если он соответствует всем условиям, предписанным для разъединителя (при его номинальном напряжении) в соответствующем стандарте. В таком случае он называется выключателем-разъединителем и маркируется на его лицевой стороне символом

К этой категории относятся все распределительные устройства Acti 9, Compact NSX и Masterpact LV линейки Schneider Electric.

Номинальная отключающая способность при коротком замыкании (Icu или Icn)

Отключающая способность низковольтного выключателя по току короткого замыкания связана (приблизительно) с cos φ петли тока короткого замыкания. Стандартные значения для этого отношения установлены в некоторых стандартах.

Номинальный ток отключения при коротком замыкании выключателя - это наибольшее (ожидаемое) значение тока, которое выключатель способен отключать без повреждения. Величина тока, указанная в стандартах, представляет собой действующее значение переменной составляющей тока повреждения, т.е.е. переходная составляющая постоянного тока (которая всегда присутствует в наихудшем случае короткого замыкания) предполагается равной нулю для расчета стандартизованного значения. Это номинальное значение (Icu) для промышленных выключателей и (Icn) для выключателей бытового типа обычно выражается в кА, действующее значение.

Icu (номинальная предельная отключающая способность sc) и Ics (номинальная рабочая отключающая способность sc) определены в IEC 60947-2 вместе с таблицей, связывающей Ics с Icu для различных категорий использования A (мгновенное отключение) и B (с выдержкой времени). отключение), как описано в разделе Другие характеристики автоматического выключателя.

Испытания для подтверждения номинальных значений н.у. Отключающая способность автоматических выключателей регулируется стандартами и включает:

  • Рабочие последовательности, состоящие из последовательности операций, т.е. замыкание и размыкание при коротком замыкании
  • Сдвиг фаз тока и напряжения. Когда ток находится в фазе с напряжением питания (cosφ для цепи = 1), прерывание тока легче, чем при любом другом коэффициенте мощности. Прерывание тока при малых значениях запаздывания cosφ значительно труднее; схема с нулевым коэффициентом мощности (теоретически) является наиболее обременительным случаем.

На практике все токи короткого замыкания энергосистемы имеют (более или менее) отстающие коэффициенты мощности, и стандарты основаны на значениях, которые обычно считаются репрезентативными для большинства энергосистем. Как правило, чем выше уровень тока повреждения (при заданном напряжении), тем ниже коэффициент мощности петли тока повреждения, например, вблизи генераторов или больших трансформаторов.

На рисунке h41 ниже, взятом из IEC 60947-2, приведены стандартизованные значения cos φ для промышленных автоматических выключателей в соответствии с их номинальным значением Icu.

  • После последовательности открытия - выдержки времени - замыкания / размыкания для проверки емкости Icu выключателя проводятся дальнейшие испытания, чтобы убедиться, что:
    • Устойчивость к диэлектрику
    • Отключение (изоляция) исполнения и
    • Тест не повлиял на правильную работу защиты от перегрузки.

Рис. H41 - Icu, связанное с коэффициентом мощности (cosφ) цепи тока короткого замыкания (IEC 60947-2)

Icu cosφ
6 кА 0. 1 2 3 Уставки уровня тока, которые относятся к токовым тепловым и «мгновенным» магнитным расцепителям для защиты от перегрузки и короткого замыкания. .

Смотрите также