Как устроен патрон для включения лампы накаливания


конструкция, виды, способы подключения и крепления

Патрон для лампочки — промежуточный элемент, используемый для удобного и надежного соединения электропроводки и лампы. Нередко к нему крепят различные декоративные элементы современных люстр и светильников.

Устройство

Конструкция электрических патронов зависит от серийного ряда. Наиболее распространены изделия модели E-серии с резьбой Эдисона. Есть три основных элемента — наружный корпус в форме цилиндра, куда крепятся металлическая гильза с резьбой Эдисона, донышко и керамический вкладыш.

Латунные контакты и специальные планки используются для передачи электрического тока от кабеля к цоколю лампы. Чтобы повысить безопасность при эксплуатации, на центральный контакт цоколя подают фазу, что уменьшает вероятность соприкосновения с фазой.

Патроны G-серии характеризуются тем же принципом работы, но имеют более простую конструкцию и используют иной метод передачи тока на цоколь.

к содержанию ↑

Маркировка

В соответствии с ГОСТ изделия с резьбой Эдисона делятся на три основные типа — E14, E27 и E40. Первые называются «миньонами» и используются в СВЧ-печах, морозильных камерах, вторые — в светильниках, последние — при организации уличного освещения. Принцип действия везде одинаков, а отличия связаны с дизайном и габаритами.

На корпусе патронов имеется маркировка. При расшифровке можно узнать характеристики изделия. E14 устанавливают в приборах с током потребления не более 2 А и мощностью до 440 Вт, E27 – до 4 А (880 Вт), E40 — до 16 А (3500 Вт). Каждая модель рассчитана на переменный ток напряжением 250 В.

к содержанию ↑

Разновидности по способу установки

Фактически способ установки — то, как именно изделие крепится к лампе в светильнике или другом электрическом оборудовании. Если несколько лет назад альтернативы резьбовому соединению не было, то сейчас используются патроны штырькового типа. Последние подразумевают крепление с помощью штырьков, расположенных на цоколе.

Резьбовое соединение — классическая схема с закручиванием лампочки. Фаза с него на лампочку передается тогда, когда последняя полностью закручена и обеспечено соприкосновение гильзы цоколя с контактами патрона.

Есть третий вариант — комбинированные приборы с цоколем GU10, используемые в современных люстрах. Сначала лампочка вставляется в патрон, затем закручивается в замке до упора. Элементы с поворотно-резьбовым соединением характеризуются сложностью конструкции, но незаменимы там, где осветительные приборы подвергаются периодическим/постоянным механическим воздействиям, включая вибрации.

к содержанию ↑

Разновидности по типу цоколя

Выбор цоколя зависит от используемых лампочек:

  1. Практически для всех экономок, люминесцентных и обычных ламп применяют тип E27 с традиционным резьбовым соединением. Патрон подходит для светодиодных приборов бытового пользования и ряда галогенок.
  2. Небольшие лампочки могут эксплуатироваться с патронами типа E14 (миньонами). Число в маркировке указывает на диаметр — в данном случае 14 мм.
  3. G-патроны — изделия, использующие штырьковое крепление. Подходят для экономок и галогенок с такой же конструкцией.

к содержанию ↑

Как подключить патрон для лампочки

Подключение патрона осветительных приборов к электропроводке дома осуществляется одним из двух методов — разъемным или неразъемным. В первом случае (способ называется «винтовым») крепление осуществляется при помощи винта с резьбой либо специальной клеммы.

Неразъемное крепление связано с самодельной пайкой или запрессовкой на заводе-изготовителе изделия. Последняя процедура актуальна для элементов серий G4-G10. Из них заранее выводятся два изолированных кабеля, длина которых не превышает 100 мм. К электрической проводке элементы крепятся при помощи клеммной колодки.

к содержанию ↑

Обыкновенный электрический

Для начала нужно разобраться с процедурой сборки обычного электрического патрона. Изготавливается керамический вкладыш, к которому прижимается пластинка из латуни, используемая в качестве основного контакта. На другой стороне вкладыша находится стальная пластина — к ней прикручивают винт, обеспечивающий надежное крепление пластины на вкладыше. Тот же винт выполняет и другую функцию — через него поступает ток на основной контакт.

При закручивании винта применяйте большое усилие, что связано с его участием в передаче электрического тока от кабеля к лампочке. Та же последовательность действий используется для крепления второй латунной пластины, после основной контакт подгибается так, чтобы находиться на уровне с боковыми.

Далее сформируйте колечки на проводниках, проденьте их через донышко и закрепите на стальные пластины. В случае применения патрона в электрической цепи со стационарным выключателем провод, передающий фазу, следует соединить с центральным контактом. Для проверки надежности соприкосновения нужно установить лампочку в цоколь и убедиться в том, что при упоре в боковые контакты основной прогибается на величину не менее 2 мм. В случае меньшего прогиба основной контакт отгибается вверх.

К данной конструкции крепится цилиндрический корпус, затем патрон можно использовать. Подбирайте лампочки, сопоставив маркировку на обоих изделиях.

к содержанию ↑

Патрон с клеммами

При подключении электрической проводки к современным патронам задействуют винтовые зажимы на клеммных колодках. Подход существенно ускоряет процесс подключения и монтажа электротехнического устройства.

Корпус изготавливается из пластмассы, монолитный. При помощи специальной заклепки к корпусу крепятся провода, питающие цоколь.

Обратите внимание! Основной недостаток изделия с клеммами — невозможность ремонта, поэтому при выходе из строя нужно целиком поменять патрон на новый. Среди типоразмеров наиболее популярны модельные ряды E14 и E27, используемые и в обычных электрических изделиях.

к содержанию ↑

Безвинтовой электрический

Наиболее современная конструкция подразумевает наличие специальных отверстий на корпусе патрона — обычно четыре (сгруппированы попарно). Сквозь отверстия протягиваются провода, фиксируемые латунными контактами с помощью пружинного механизма. Попарное соединение контактов упрощает параллельное подключение лампочек в люстрах или светильниках. Электрический ток подается на первый патрон, а последующие подключаются к нему при помощи перемычек.

Важно! Таким способом можно соединить множество экономок, потребляющих минимум электроэнергии.

Изделия характеризуются простым и быстрым подключением — зачистите конец провода и вставьте в правильное отверстие на корпусе патрона с зажимным креплением.

Многие люстры и осветительные приборы используют многожильные тонкие провода. Обеспечить их надежное крепление в корпусе безвинтового патрона нереально. Выбирайте люстры с обслуживаемыми концами проводов либо самостоятельно напаивайте на многожильный кабель сплав, чтобы провод стал одножильным. Луженные концы проще вставить в контакт безвинтового изделия.

Если не умеете пользоваться паяльником, есть иной способ. Прежде чем вставлять в отверстие зачищенный конец кабеля, поместите туда металлический стержень, диаметр которого превышает диаметр самого провода. Подойдут гвоздь, отвертка. Отодвиньте пружинный контакт и без проблем вставьте многожильный провод в отверстие. Удалите гвоздь (стержень), чтобы контакт зажал жилы провода. Тот же способ используется для демонтажа. Слегка потяните за кабель, чтобы проверить надежность соединения.

к содержанию ↑

Как подключить розетку к электрическому патрону

На первый взгляд подключение розетки к электрическому патрону — процесс совершенно бессмысленный. Представьте, если срочно понадобилась розетка рядом с зеркалом в ванной комнате, а распределительная коробка расположена слишком далеко. В ванной комнате обязательно имеется осветительный прибор с патроном, к которому параллельно подсоединяют два кабеля, необходимых для эксплуатации розетки.

Но есть один нюанс: розетка обесточивается всякий раз, когда выключается свет в ванной комнате, что нельзя назвать недостатком. Подобная взаимосвязь повышает электрическую безопасность — в случае утечки воды и попадания влаги на розетку исключается короткое замыкание. Для большей безопасности выберите герметичные розетки, предназначенные для комнат с высоким уровнем влажности.

к содержанию ↑

Способы крепления

В большинстве случаев патрон к осветительному прибору присоединяется через дно. В донышке есть отверстие, предназначенное для ввода электрического кабеля. Серия E27 выпускается с резьбой M16, M10 или M13, а E14 — M10.

За токоподводящие провода

Прямое соединение патрона с проводами недопустимо! Прежде нужно обеспечить надежное крепление изделия в осветительном приборе (светильнике или люстре), для чего на донышко устанавливают пластиковую втулку с отверстием по центру, необходимым для кабеля. К втулке монтируется пластиковый винт для дальнейшей фиксации.

Подключите патрон, зажмите провода с помощью пластикового винта. Втулка предназначается для монтажа декоративных деталей, а винт обеспечивает надежную фиксацию плафона и подвески прибора.

к содержанию ↑

На трубке

Патрон крепится при помощи металлической трубки, что позволяет подвешивать тяжелые плафоны к потолку. Трубка оснащается дополнительными гайками, с помощью которых устанавливают арматуру для люстры, включая колпаки. Вся нагрузка падает на металлическую трубку, а провода, необходимые для подключения питания, протягиваются прямо через нее.

Патроны с резьбой на наружной поверхности корпуса могут украшаться абажурными кольцами, другими элементами декора.

к содержанию ↑

Втулкой

Трубчатые втулки используются для крепления патронов в настольных лампах, настенных бра. Изготавливаются изделия из листовых материалов. Достаточно проделать отверстие, через которое следует прикрепить патрон, используя втулку.

Пластмассовые втулки из-за нагрева лампочки могут деформироваться, из-за чего патрон начинает болтаться. Замените пластик на металл.

Крепежная резьба бывает разной, поскольку для патронов с цоколем E27 определенного стандарта нет. Для замены пластиковой втулки на металлическую используйте резисторы. Прежде чем ломать, разберите и сравните резьбу, чтобы зазря не испортить изделие.

к содержанию ↑

С безвинтовыми контактными зажимами

Корпус и дно патрона, использующее безвинтовые зажимные контакты, соединены между собой с помощью двух защелок. К трубке с резьбой прикручивается дно изделия, после заводятся электрические провода. Корпус выполняется в форме цилиндра и крепится к донышку.

Элементы подлежат ремонту и обслуживанию. Воспользуйтесь отверткой и уберите защелки в стороны, чтобы не повредить кабель при демонтаже изделия.

к содержанию ↑

Ремонт электрических патронов

Электрические патроны E и G серий отличаются между собой и по возможности технического обслуживания. Если первые ремонтируются, в большинстве случаев при поломке вторых требуется замена патрона в люстре.

Ремонт разборного электрического патрона Е27

Причиной частого перегорания лампочек, изменения яркости при эксплуатации осветительных приборов может быть поломка электрического патрона. На это указывают и посторонние звуки, слышимые при включении изделия.

Выкрутите лампочку из цоколя и осмотрите внутреннюю полость элемента. При обнаружении почерневших контактов их нужно не просто зачистить, но и разобраться в первопричине. Часто образованию почернения предшествует плохой контакт в точке соприкосновения патрона и электрических проводов.

Разберите патрон, осмотрите проводные соединения (слегка потяните за кабель, чтобы убедиться в надежной фиксации) и зачистите контактные пластины. В некоторых случаях для лучшего соприкосновения пластины нужно подогнуть в направлении цоколя лампочки.

Нередки случаи, когда при попытке выкрутить лампочку из патрона колба отклеивается от металлического цоколя и последний остается внутри. Если это произошло, разберите корпус и дно, чтобы вытащить цоколь лампочки. Другой вариант — возьмите в руки плоскогубцы с заизолированными ручками, попытайтесь ухватиться за край цоколя и проверните его против часовой стрелки. Действуйте осторожно, чтобы не повредить внутреннюю резьбу патрона.

к содержанию ↑

Заключение

При выборе электрических патронов для осветительных приборов ориентируйтесь на надежное крепление лампочки и рассчитывайте уровень безопасности.

Изделие — важная часть вспомогательной фурнитуры светильников и люстр, элемент электрической цепи. Малейшие сбои могут привести к возникновению пожара или серьезным травмам. Избегайте покупок некачественных, дешевых изделий!

Патроны для лампочек: конструкция, виды, способы подключения и крепления

Что такое лампа накаливания? (с иллюстрациями)

Лампа накаливания, также известная как электрическая лампочка, представляет собой форму электрического света. Лампы накаливания настолько эффективны, что получили широкое распространение по всему миру для всех видов освещения, от освещения внутренней части духовки до безопасного освещения парковок. Механика лампы накаливания на удивление проста, а конструкция не сильно отличается от самых ранних прототипов.

Лампы накаливания.

Этот тип электрического света работает, подвергая очень тонкую нить накала электрическому току. Если электрический ток достаточно высок, он нагреет нить накала и возбудит атомы внутри, в конечном итоге заставив их излучать свет.Свойство накаливания в науке подразумевает свечение в ответ на тепло, и лампа накаливания, вероятно, является наиболее известной демонстрацией этого свойства.

Стандартные лампы накаливания часто используются для освещения домов.

Хамфри Дэви часто приписывают первым доказательством того, что если металлическая нить накаливания подверглась воздействию электрического тока, она испустила бы свет. После его демонстрации до того, как была представлена ​​лампа накаливания, было немного проб и ошибок. Сначала людям нужно было найти металл, из которого получилась бы эффективная нить, а затем они должны были решить общую проблему окисления.Открытая нить накала не прослужит очень долго, что потребует создания вакуума вокруг нити, что означает, что кто-то должен разработать оболочку, чтобы заключить ее. Стеклянная колба оказалась идеальной, и на свет появилась лампа накаливания.

Современные лампы накаливания обычно заполнены инертным газом, а не работают в вакууме.Срок службы лампочки может быть весьма впечатляющим, поскольку лампы, как правило, служат дольше, если их оставлять постоянно включенными, а не часто выключать и включать. На срок службы лампы также могут влиять типы осветительных приборов, в которых она используется, количество света, которое она предназначена для производства, и такие факторы, как травмы; нить накала часто ломается, если, например, лампу накаливания толкать, когда она включена.

Лампы накаливания бывают самых разных конфигураций.Интенсивность света можно изменять, регулируя мощность и состав лампы; Например, прозрачные лампы излучают яркий ясный свет, а матовые лампы приглушают свет. Размер и форма также могут быть разными: некоторые лампы предназначены для имитации свечей, в то время как другие предназначены для размещения в уникальных или небольших помещениях, поэтому для них требуется необычная форма и присоединенная розетка для подключения к источнику электрического тока.

.

Кто изобрел лампочку?

Хотя Томасу Эдисону обычно приписывают изобретение лампочки, знаменитый американский изобретатель был не единственным, кто внес свой вклад в разработку этой революционной технологии. Многие другие известные деятели также запомнились работой с электрическими батареями, лампами и созданием первых ламп накаливания.

Ранние исследования и разработки

История лампочки началась задолго до того, как Эдисон запатентовал первую коммерчески успешную лампочку в 1879 году.В 1800 году итальянский изобретатель Алессандро Вольта разработал первый практический метод производства электричества - гальваническую батарею. Сделанная из чередующихся дисков из цинка и меди, перемежаемых слоями картона, пропитанного соленой водой, куча проводила электричество, когда медный провод был подключен с обоих концов. Светящийся медный провод Вольты, на самом деле предшественник современных батарей, также считается одним из самых ранних проявлений освещения лампами накаливания.

Вскоре после того, как Вольта представил свое открытие постоянного источника электричества Королевскому обществу в Лондоне, Хэмфри Дэви, английский химик и изобретатель, создал первую в мире электрическую лампу, соединив гальванические батареи с угольными электродами.Изобретение Дэви 1802 года было известно как электрическая дуговая лампа, названная в честь яркой дуги света, излучаемой между двумя угольными стержнями.

Хотя дуговая лампа Дэви, безусловно, была улучшением автономных свай Volta, она все же не была очень практичным источником освещения. Эта примитивная лампа быстро перегорела и была слишком яркой для использования дома или на работе. Но принципы, лежащие в основе дугового света Дэви, использовались на протяжении 1800-х годов при разработке многих других электрических ламп и лампочек.

В 1840 году британский ученый Уоррен де ла Рю разработал электрическую лампочку, в которой вместо меди использовалась спиральная платиновая нить накала, но высокая стоимость платины помешала лампочке добиться коммерческого успеха. А в 1848 году англичанин Уильям Стэйт увеличил срок службы обычных дуговых ламп, разработав часовой механизм, который регулировал движение быстро разрушающихся углеродных стержней ламп. Но стоимость батарей, используемых для питания ламп Стэйта, сдерживала коммерческие начинания изобретателя.

Джозеф Свон против Томаса Эдисона

В 1850 году английский химик Джозеф Суон занялся проблемой экономической эффективности предыдущих изобретателей и к 1860 году разработал лампочку, в которой вместо платиновых нитей использовались нити из карбонизированной бумаги. Свон получил патент в Великобритании в 1878 году, а в феврале 1879 года он продемонстрировал работающую лампу на лекции в Ньюкасле, Англия, по данным Смитсоновского института. Как и в более ранних версиях лампочки, нити Свана были помещены в вакуумную трубку, чтобы свести к минимуму воздействие кислорода и продлить срок их службы.К несчастью для Свана, вакуумные насосы его времени не были эффективными, как сейчас, и, хотя его прототип хорошо работал для демонстрации, на практике он был непрактичным.

Эдисон понял, что проблема с конструкцией Свана была в нити накала. Тонкая нить накала с высоким электрическим сопротивлением сделает лампу практичной, потому что для ее свечения потребуется лишь небольшой ток. Он продемонстрировал свою лампочку в декабре 1879 года. Свон включил усовершенствование в свои лампочки и основал компанию по производству электрического освещения в Англии.Эдисон подал в суд за нарушение патентных прав, но патент Суона был серьезным заявлением, по крайней мере, в Соединенном Королевстве, и два изобретателя в конечном итоге объединили усилия и создали компанию Edison-Swan United, которая стала одним из крупнейших в мире производителей лампочек, согласно Музей неестественной тайны.

Лебедь был не единственным конкурентом, с которым Эдисон столкнулся. В 1874 году канадские изобретатели Генри Вудворд и Мэтью Эванс подали патент на электрическую лампу с угольными стержнями разного размера, помещенными между электродами в стеклянном цилиндре, заполненном азотом.Пара безуспешно пыталась коммерциализировать свои лампы, но в конце концов продала свой патент Эдисону в 1879 году.

За успехом лампочки Эдисона последовало основание в 1880 году компании Edison Electric Illuminating Company в Нью-Йорке. финансовые взносы JP Morgan и других богатых инвесторов того времени. Компания построила первые электростанции, которые питали бы электрическую систему, и недавно запатентованные лампы. Первая генерирующая станция была открыта в сентябре 1882 года на Перл-стрит в нижнем Манхэттене.

По данным Министерства энергетики США, другие изобретатели, такие как Уильям Сойер и Албон Ман, присоединились к слиянию своей компании с компанией Эдисона и образовали General Electric.

Первая практичная лампа накаливания

По данным Министерства энергетики, Эдисон преуспел и превзошел своих конкурентов в разработке практичной и недорогой лампочки. Эдисон и его команда исследователей в лаборатории Эдисона в Менло-Парке, штат Нью-Джерси, протестировали более 3000 дизайнов лампочек в период с 1878 по 1880 годы.В ноябре 1879 года Эдисон подал патент на электрическую лампу с углеродной нитью. В патенте перечислено несколько материалов, которые могут быть использованы для нити, включая хлопок, лен и дерево. Следующий год Эдисон потратил на поиск идеальной нити для своей новой лампы, тестируя более 6000 растений, чтобы определить, какой материал будет гореть дольше всего.

Через несколько месяцев после выдачи патента 1879 года Эдисон и его команда обнаружили, что обугленная бамбуковая нить может гореть более 1200 часов.Бамбук использовался для изготовления нитей в лампах Эдисона, пока его не начали заменять более долговечными материалами в 1880-х и начале 1900-х годов. [Связано: Какая лампа горит дольше всего?]

В 1882 году Льюис Ховард Латимер, один из исследователей Эдисона, запатентовал более эффективный способ производства углеродных волокон. А в 1903 году Уиллис Р. Уитни изобрел обработку этих нитей, которая позволила им ярко гореть, не затемняя внутреннюю поверхность их стеклянных колб.

Вольфрамовые нити

Уильям Дэвид Кулидж, американский физик из General Electric, в 1910 году усовершенствовал метод производства вольфрамовых нитей.Вольфрам, который имеет наивысшую температуру плавления среди всех химических элементов, был известен Эдисону как отличный материал для нити накаливания лампочек, но в конце 19 века не было оборудования, необходимого для производства сверхтонкой вольфрамовой проволоки. Вольфрам по-прежнему является основным материалом, который сегодня используется в нити накаливания.

Светодиодные фонари

Светоизлучающие диоды (светодиоды) теперь считаются будущим освещения из-за меньшего энергопотребления, более низкой ежемесячной цены и более длительного срока службы, чем у традиционных ламп накаливания.

Ник Холоньяк, американский ученый из General Electric, случайно изобрел красный светодиод, пытаясь создать лазер в начале 1960-х годов. Как и в случае с другими изобретателями, принцип, согласно которому некоторые полупроводники светятся при подаче электрического тока, был известен с начала 1900-х годов, но Холоняк был первым, кто запатентовал его для использования в качестве осветительной арматуры.

По данным Министерства энергетики, в течение нескольких лет к смеси были добавлены желтые и зеленые светодиоды, которые использовались в нескольких приложениях, включая световые индикаторы, дисплеи калькуляторов и светофоры.Синий светодиод был создан в начале 1990-х годов Исаму Акасаки, Хироши Амано и Сюдзи Накамура, группой японских и американских ученых, за что они получили Нобелевскую премию по физике 2014 года. Синий светодиод позволил ученым создавать белые светодиодные лампы, покрывая диоды люминофором.

Сегодня выбор освещения расширился, и люди могут выбирать различные типы лампочек, в том числе компактные люминесцентные (КЛЛ) лампы, работающие за счет нагрева газа, который производит ультрафиолетовое излучение, и светодиодные лампы.

Несколько компаний по освещению раздвигают границы возможностей лампочек, в том числе Phillips и Stack. Phillips - одна из нескольких компаний, которые создали беспроводные лампочки, которыми можно управлять через приложение для смартфона. В Phillips Hue используется светодиодная технология, которую можно быстро включить, выключить или затемнить одним щелчком на экране смартфона, а также можно запрограммировать. Высококачественные лампочки Hue можно даже настроить на широкий диапазон цветов (всего около шестнадцати миллионов) и синхронизировать их с музыкой, фильмами и видеоиграми.

Stack, начатый инженерами Tesla и NASA, разработал интеллектуальную лампочку с использованием светодиодной технологии с широким спектром функций. Он может автоматически определять окружающее освещение и регулировать его по мере необходимости, он выключается и включается с помощью датчика движения, когда кто-то входит в комнату, может использоваться в качестве оповещения о пробуждении и даже настраивает цвет в течение дня в соответствии с естественными циркадными циклами человека и узоры естественного света. Лампочки также имеют встроенную программу обучения, которая со временем адаптируется к потребностям жителей.И все эти функции можно программировать или контролировать с любого смартфона или планшета. Подсчитано, что интеллектуальные лампочки Stack могут потреблять примерно на шестьдесят процентов меньше энергии, чем обычные светодиодные лампы, и служат от двадцати до тридцати тысяч часов в зависимости от модели (по сравнению с двадцатью пятью и пятьдесят тысячами часов для обычных светодиодных лампочек. в соответствующих корпусах).

Эти лампочки совместимы (или скоро будут) со многими вариантами превращения всего дома в умный дом, включая использование с Amazon Alexa, Google Home и Apple HomeKit.

Следуйте за Элизабет Палермо в Twitter @techEpalermo, Facebook или Google+. Следите за LiveScience @livescience. Мы также в Facebook и Google+.

Рэйчел Росс внесла свой вклад в эту статью.

Дополнительные ресурсы

.

Лампа накаливания | Статья о лампе накаливания по свободной энциклопедии

источника света, в котором преобразование электрической энергии в световую энергию происходит в результате нагрева огнеупорного проводника электрического тока. Впервые энергия Люминоуса была получена этим методом в 1872 году русским ученым А. Н. Лодыгиным, который пропустил электрический ток через угольный стержень, помещенный в закрытый вакуумированный сосуд. В 1879 году американский изобретатель Т. А. Эдисон представил достаточно прочную конструкцию лампы накаливания с углеродной нитью, которую можно было удобно производить в промышленных масштабах.В 1898–1908 гг. Несколько металлов (осмий, тантал и вольфрам) были испытаны в качестве тел накаливания, а в 1909 г. началось использование ламп накаливания с вольфрамовой нитью зигзагообразной формы. Лампы накаливания, наполненные азотом или инертными газами (аргон и криптон). появился в 1912–13; вольфрамовая нить была изготовлена ​​в форме спирали (спирали). Дальнейшие усовершенствования ламп накаливания были направлены на повышение световой отдачи за счет увеличения температуры тела накаливания при сохранении срока службы лампы.Использование макромолекулярных инертных газов с добавками галогенов для заполнения ламп накаливания позволило снизить загрязнение колбы лампы частицами диспергированного вольфрама и снизить скорость испарения вольфрамовой нити. Использование раскаленных тел в форме двойной спирали (спирали, намотанной из спирали) или тройной спирали уменьшило потери тепла через газ.

Все многочисленные разновидности ламп накаливания изготавливаются из стандартных деталей, хотя размеры и форма деталей различаются.Конструкция типичной лампы накаливания показана на рисунке 1. Внутри колбы тело накаливания (вольфрамовая спираль) прикреплено к стеклянной или металлической выхлопной трубе с помощью держателей из молибденовой проволоки. Концы спирали прикрепляем к концам выводов. Средняя часть выводных проводов изготовлена ​​из платинита или молибдена для создания герметичного соединения со стеклянным стержнем. Колба лампы при вакуумной обработке заполняется инертным газом; впоследствии выхлопная труба термосваривается, образуя наконечник.Для защиты наконечника и облегчения крепления колбы к патрону лампа снабжена цоколем, прикрепленным к колбе с помощью герметика.

Рисунок 1 . Схема электрической лампы накаливания: (1) стеклянная колба, (2) корпус накаливания, (3) держатели, (4) выхлопная труба, (5) выводы, (6) шток, (7) герметизирующий состав основания, (8) наконечник, (9) цоколь

Лампы накаливания классифицируются в зависимости от области использования (лампы для общего освещения, для фар и т. д.), в зависимости от их основной конструкции и световых свойств колбы (лампы с отражателем, декоративные лампы, и лампы с рассеивающим покрытием), или по форме корпуса накаливания (лампы с плоской спиралью, двойной спиралью и т. д.).По габаритным размерам лампы накаливания делятся на субминиатюрные, миниатюрные, малогабаритные, стандартные и большие. Например, лампы длиной менее 10 мм и диаметром 6 мм называются сверхминиатюрными, а большие лампы имеют длину более 175 мм и диаметр 80 мм.

Таблица 1. Световая отдача некоторых ламп
Световая отдача (люмен на ватт) Примечания
Керосиновая лампа......... <1
Лампа накаливания
с углеродной нитью. . . . 2–3
с танталовой нитью. . . 7 Общее освещение зданий и транспортных средств
с вольфрамовой нитью накала (вакуум) ........ 8–9
с двойной спиралью из вольфрама (газонаполненная, промышленный криптон)......... 12,5–13,5
с двойной спиралью из вольфрама (галогенные лампы) ..... 22–27 Специальные оптические инструменты
с плоской спиралью из вольфрама (галогенные лампы) .... 34,5 Малые кинопроекторы

Лампы накаливания изготавливаются на напряжение от долей вольта до сотен вольт и на мощность до десятков киловатт (кВт) .Например, прожекторная лампа мощностью 10 кВт имеет длину 475 мм и диаметр 275 мм. Увеличение рабочего напряжения на 1 процент относительно номинального напряжения увеличивает световой поток от лампы накаливания на 4 процента, но сокращает срок ее службы на 15 процентов. Кратковременное подключение лампы к напряжению, превышающему номинальное напряжение на 15 процентов, приводит к выходу лампы из строя. Срок службы лампы накаливания составляет от 5 часов для авиационных фар до 1000 часов для ламп, используемых в транспортной отрасли; поэтому лампы следует устанавливать в местах, позволяющих легко заменить их.Световая отдача ламп накаливания зависит от их конструкции, напряжения и мощности, а также от продолжительности службы; она составляет от 10 до 35 люмен на ватт. Значения световой отдачи для нескольких ламп разной конструкции приведены в таблицах 1 и 2.

Таблица 2. Световая отдача осветительных ламп, заполненных криптоном (при сроке службы 1000 часов)
Напряжение Мощность (Вт) Светоотдача (люмен на ватт)
127....................... 60 13,4
127 ................. ...... 75 14,4
127 ...................... 100 15,6
220 ....................... 60 11,7
220 ................ ....... 75 12,7
220 ...................... 100 13,8

По световой эффективности лампы накаливания уступают газоразрядным источникам света.Однако лампы накаливания проще в эксплуатации (не требуют пускателей и сложной арматуры) и практически не имеют ограничений по напряжению и мощности. Ежегодное производство ламп накаливания во всем мире составляет до 10 миллиардов; насчитывается более 2000 наименований ламп.

СПИСОК ЛИТЕРАТУРЫ

Скобелев В.М. «Лампы накаливания». В Справочная книга по свето- технике . Москва, 1956.
Ульмишек Л.Г. Производство электрических ламп накаливания , 5 изд.Москва-Ленинград, 1966.
Гуторов, М. М. Основы светотехники и источники света . Москва, 1968.

Большая Советская Энциклопедия, 3-е издание (1970-1979). © 2010 The Gale Group, Inc. Все права защищены.

.

лампочка Эдисона | Институт Франклина

К январю 1879 года в своей лаборатории в Менло-Парке, штат Нью-Джерси, Эдисон построил свою первую электрическую лампу накаливания с высоким сопротивлением. Он работал, пропуская электричество через тонкую платиновую нить накала в стеклянной вакуумной лампе, которая задерживала плавление нити. Тем не менее, лампа горела всего несколько коротких часов. Чтобы улучшить лампочку, Эдисону потребовалась вся настойчивость, которой он научился много лет назад в своей подвальной лаборатории.Он испытал тысячи и тысячи других материалов для изготовления нити. Он даже думал об использовании вольфрама, металла, используемого сейчас для нити накаливания лампочек, но он не мог работать с ним, учитывая инструменты, доступные в то время.

Однажды Эдисон сидел в своей лаборатории, рассеянно катая между пальцами кусок сжатого угля. Он начал карбонизацию материалов, которые будут использоваться для нити накала. Он проверил обугленные волокна всех мыслимых растений, в том числе лаврового дерева, самшита, гикори, кедра, льна и бамбука.Он даже связался с биологами, которые отправили ему растительные волокна из тропиков. Эдисон признал, что работа была утомительной и очень требовательной, особенно в отношении его рабочих, помогающих с экспериментами. Он всегда признавал важность тяжелой работы и определения.

«Прежде чем я закончил, - вспоминал он, - я проверил не менее 6000 наростов овощей и обыскал весь мир в поисках наиболее подходящего материала волокна».

«Электрический свет вызвал у меня наибольшее количество исследований и потребовал самых сложных экспериментов», - писал он.«Я сам никогда не разочаровывался и не был склонен к безнадежному успеху. Я не могу сказать то же самое обо всех своих сотрудниках».

«Гений - это один процент вдохновения и девяносто девять процентов пота».

Эдисон решил попробовать карбонизированную хлопковую нить. Когда к готовой лампе было приложено напряжение, она начала излучать мягкое оранжевое свечение. Примерно через пятнадцать часов нить наконец сгорела. Дальнейшие эксперименты позволили получить волокна, которые могли гореть все дольше и дольше с каждым испытанием.На электрическую лампу Эдисона был выдан патент № 223 898.

Лампа Эдисона с нашего чердака датирована 27 января 1880 года. Это продукт постоянных усовершенствований, которые Эдисон внес в лампу 1879 года. Несмотря на то, что ей больше ста лет, эта лампочка очень похожа на лампочки, освещающие ваш дом прямо сейчас. Цоколь или цоколь этой лампы XIX века аналогичен тем, которые используются до сих пор. Это была одна из самых важных особенностей лампы и электрической системы Эдисона. Этикетка на этой лампе гласит: «Лампа Эдисона нового типа ».Запатентован 27 января 1880 г. ДРУГИЕ ПАТЕНТЫ EDISON. "

В начале 1880-х годов Эдисон планировал и контролировал строительство первой коммерческой центральной электростанции в Нью-Йорке. В 1884 году Эдисон начал строительство новой лаборатории в Вест-Ориндж, штат Нью-Джерси, где он жил и работал до конца своей жизни. Объект Вест-Ориндж теперь является частью Национального исторического центра Эдисона, находящегося в ведении Службы национальных парков.

Перед своей смертью в 1931 году Эдисон запатентовал 1093 его изобретений.Чудеса его разума включают микрофон, телефонную трубку, универсальный биржевой тикер, фонограф, кинетоскоп (используемый для просмотра движущихся изображений), аккумуляторную батарею, электрическую ручку и мимеограф. Эдисон также улучшил многие другие существующие устройства. На основе открытия, сделанного одним из его сотрудников, он запатентовал эффект Эдисона (теперь называемый термоэлектронным диодом), который является основой всех электронных ламп. Эдисона навсегда запомнят за его вклад в создание лампы накаливания. Несмотря на то, что он не придумал первую в истории лампочку, а технологии продолжают меняться каждый день, работа Эдисона с лампочками стала яркой искрой на шкале времени изобретений.В самом начале своих экспериментов с лампой накаливания в 1879 году он сказал:

«Мы поражаем ее большим электрическим светом, лучше, чем мое яркое воображение вначале представляло. Где эта штука остановится, Господь знает только. "

Примечание. Изображенный выше объект является частью защищенной коллекции объектов Института Франклина. Изображения принадлежат © Институт Франклина. Все права защищены.

.

Смотрите также