Как устроена диодная лампа


способы сборки и конструктивные элементы

По сравнению с обычными лампами накаливания устройство светодиодной лампы с технической точки зрения сложнее. Если для первых используется прозрачный стеклянный корпус, то в случае со вторыми разглядеть что-либо находящееся внутри не выйдет. Для того чтобы узнать, из чего состоит такой источник света, необходимо разобрать его на части.

Общее устройство светодиодных лампочек, независимо от производителя, практически идентичное (с небольшими отличиями). Ассортимент стандартных изделий с цоколем E14 или E27 делится на три категории — фирменные, низкосортные китайские и филаментные.

к содержанию ↑

Низкокачественные китайские лампочки

При разборе фирменной лампы можно обнаружить все необходимые для надежности и долговечности конструктивные элементы. Но если заглянуть под корпус дешевого китайского изделия, то первое, чего вы не обнаружите — радиатор и драйвер.

Драйвер обычно заменяют блоком питания с неполярным конденсатором, неспособным стабилизировать ток на выходе. Устанавливают такой блок в центр платы с диодами. Если взглянуть на нее сверху, то можно увидеть диодный мост с резисторами, снизу — два конденсатора. Это позволяет существенно уменьшить стоимость и качество изделия.

Для охлаждения прибора в корпусе проделывают небольшие отверстия. Эффективность низкая, кристаллы очень быстро перегорают. Плата установлена на пластиковом корпусе и закреплена защелками. Для соединения с цоколем используют два спаянных провода.

к содержанию ↑

Филаментные лампы

Филаментный источник света внешне напоминает лампу накаливания, но конструктивно остается светодиодным изделием. В таком случае пропадает необходимость в отводе тепла, но применение устройств в бытовой сфере связано с исключительно эстетическими соображениями.

Основной элемент филаментного прибора — светодиодная нить. В зависимости от количества таких нитей производят изделия разной мощности. Филамент — тонкий стержень из стекла, на поверхности которого имеются SMD-диоды. Верхняя часть покрывается люминофором, дающим желтый оттенок. Для отвода тепла применяют стеклянную колбу, внутренняя часть которой заполняется газом.

Из-за отсутствия места для драйвера внутри производители размещают низкокачественный модуль питания. Это повышает пульсацию, негативно сказывающуюся на зрительных органах. Для избавления от мерцания между цоколем и колбой добавляется пластиковое кольцо с качественным драйвером.

к содержанию ↑

Принцип действия светодиодных ламп

Принцип работы этих приборов построен на сложных физических процессах. При подаче электрического тока происходит соприкосновение двух веществ, изготовленных из разносортных материалов. Это приводит к образованию светового потока.

Парадоксальность системы связана с тем, что ни один из материалов, используемых для изготовления двух веществ, не относится к проводникам электрического тока. Это полупроводники, способные пропускать ток только в одном направлении. Поэтому при подключении светодиодов важно соблюдать полярность. Один материал наделен отрицательными электронами, а другой — положительными ионами.

Также в полупроводниках активизируются иные процессы. В момент смены состояния выделяется тепловая энергия. Экспериментальным методом изобретатели нашли нужное сочетание веществ, при котором помимо энергии появляется и световое излучение.

Все приборы, которые пропускают ток в одном направлении, называются диодами. Светодиоды — диоды, способные выделять световой поток.

Первые LED-диоды излучали свет в узком спектре — красном, желтом или зеленом. При этом сила свечения была минимальной. В течение продолжительного отрезка времени светодиоды использовались исключительно как индикаторы. Сегодня диапазон излучения значительно расширен и охватывает едва ли не весь спектр. С другой стороны, определенные волны всегда длиннее, поэтому данные устройства делятся на источники холодного и теплого света (в зависимости от тепловой температуры).

к содержанию ↑

Способы сборки

По способу сборки изделия делятся на несколько категорий.

DIP

DIP расшифровывается как Dual In-line Package. Конструкция приборов интересна, но существенно устарела. Выделяют следующие размеры светодиодов:

Также полупроводниковые изделия различаются цветом, материалом изготовления, формой чипа. Из преимуществ DIP-сборки выделим малый нагрев и высокую яркость. Бывают одноцветные и многоцветные (RGB-технология). Можно распознать по характерной цилиндрической форме и встроенной линзе выпуклого типа.

к содержанию ↑

«Пиранья»

Данная группа осветительных устройств характеризуется высоким световым потоком. Изготавливаются прямоугольной формы, имеют четыре PIN-вывода, бывают красными, синими, белыми или зелеными.

По сравнению с DIP-технологией изделия более жестко и прочно «сидят» на плате. Свинцовая подложка повышает теплопроводность, но в то же время понижает общую безопасность при эксплуатации. Широкая распространенность обусловлена большим диапазоном рабочих температур.

к содержанию ↑

SMD-технология

SMD расшифровывается как Surface Mounting Device (в переводе с англ. — «устройство, фиксируемое на поверхности»). Эти светодиоды характеризуются мощностью в диапазоне 0,01–0,2 Вт. Главная особенность связана с наличием нескольких кристаллов (1–3), монтируемых на керамическую подложку.

Корпус покрыт люминофором. Стандартный припой используется для соединения основной платы и контактных площадок.

Из недостатков выделим низкую ремонтопригодность: если выйдет из строя хотя бы один диод, то придется заменять целую плату.

к содержанию ↑

COB-технология

Последняя и наиболее надежная технология изготовления светодиодов получила название Chip On Board (COB). Полупроводники крепятся на плату без корпуса и какой-либо подложки, после чего покрываются люминофором.

Главное преимущество связано с небольшой площадью свечения при высокой мощности. Равномерное свечение изделия гарантируется высокой плотностью светодиодов и наличием люминофора. Такие светодиоды чаще применяются в наши дни.

к содержанию ↑

Устройство светодиодных источников света

Светодиодный источник состоит из следующих конструктивных элементов:

  • LED-диоды;
  • драйверы;
  • корпус;
  • радиатор;
  • цоколь.

к содержанию ↑

Светодиоды

Несколько лет назад конструкция светодиодной лампы незначительно отличалось из-за отсутствия широкого ассортимента LED-диодов. Самыми распространенными были чипы на 3–5 мм. Позже появились изделия на 10 мм.

Сегодня светодиодов намного больше. Чаще всего используются SMD 5050, SMD 3528, SMD 5730, SMD 2835, 1W, 3W и 5W.

Количество светодиодов бывает разным, его задает производитель. При монтаже нескольких диодов производят специальные расчеты, чтобы вывести оптимальный ток потребления. Припой осуществляется к текстолитовым или алюминиевым платам. Светодиоды собираются в группы, соединяемые последовательно. Опять же, количество групп неограниченно.

Последовательное соединение обеспечивает постоянный ток, но есть существенный недостаток — если выйдет из строя хотя бы один LED-диод, то перестает работать все изделие. С другой стороны, диод можно без проблем заменить на новый.

Платы, к которым припаиваются источники света, классифицируются по форме и бывают круглыми, прямоугольными, овальными, многоугольными и т. д.

к содержанию ↑

Драйверы

Драйверы предназначены для преобразования входящего напряжения в пригодную для питания устройства величину. Причем питание для каждой группы светодиодов может быть разным. Самыми распространенными являются трансформаторные схемы с драйверами.

Конструктивные элементы могут быть двух типов — открытыми и закрытыми (в корпусе). Монтируют их в корпус ламп, осветительных приборов.

Дешевые драйверы применяют в обычных фонариках, в которых светодиоды питаются от батареек. В таком случае нет необходимости в резисторе, ограничивающем ток. Из-за этого диоды могут получать повышенный ток, что приводит к их скорому выходу из строя.

Китайские производители нередко пытаются сэкономить на приборах, устанавливая вместо драйверов обычные ограничители тока со схемой на основе конденсатора. Избегайте покупки таких изделий, поскольку помимо крайней неэкономичности они негативно воздействуют на здоровье человека (высокая пульсация).

к содержанию ↑

Цоколь

Поскольку светодиодные изделия позиционируются как лучшие аналоги лампам накаливания, то нет ничего удивительного в том, что они изготавливаются со стандартными цоколями — E27 и E14. Последние часто применяются в ночных и настенных светильниках.

За рубежом иные стандарты, поэтому там чаще можно встретить светодиодные лампы E26.

Корпус

В отличие от ламп накаливания для светодиодных нет необходимости в полной герметичности колб, да и газовая среда внутри отсутствует. Одна из разновидностей светодиодных светильников — филаментный источник, повторяющий устройство лампы накаливания и нуждающийся в газовой среде.

Потребляя то же количество электроэнергии, изделия светят намного ярче аналогов. Обычная светодиодная лампа имеет закрытую колбу, производимую из стекла или пластика. Матовое покрытие понижает светопропускаемость, но это незначительные издержки производства.

к содержанию ↑

Радиаторы

Данные электротехнические изделия боятся высокой температуры и перегрева. По этой причине для повышения срока эксплуатации необходимо устройство для отвода тепла. Алюминиевые платы частично снижают влияние перегрева, но этого недостаточно. Дорогие и качественные лампы обязательно используют радиаторы, размер которых зависит от количества светодиодов в приборе.

Наличие радиатора повышает стоимость и габариты изделия, но является обязательным условием для создания качественного и долговечного прибора.

к содержанию ↑

Компоновка составных частей

В зависимости от производителя, устройство и конструкция лампы разные. С другой стороны, общий принцип компоновки остается одинаковым. Сборка начинается с цоколя, куда последовательно устанавливают драйвер, радиатор, плату с LED-диодами и колбу.

Для сравнения рассмотрим устройство изделия от двух производителей.

Светодиодная лампа BBK

Цоколь изготавливается из пластика. Внутри установлен качественный драйвер. Для корпуса используется алюминий, выполняющий функции радиатора. Туда крепится плата с диодами и линза. Наличие данной линзы понижает световую отдачу прибора.

к содержанию ↑

Лампа Gauss

Опять же цоколь изготовлен из пластика, имеются драйвер и алюминиевый корпус с установленной диодной платой. Конструкция гарантирует долговечность изделия.

Как проверить светодиодную лампу при покупке

Возьмите в руки светодиодную лампу и осмотрите ее внешне, чтобы убедиться в отсутствии каких-либо изъянов. Выполнить это можно только при условии применения прозрачной колбы. Для начала проверьте радиатор (он выпускается литого или наборного типа). Чем выше мощность изделия, тем объемнее должен быть радиатор. Отличным вариантом станет применение алюминиевых или керамических охладителей.

В идеале электротехнический элемент нужно покрыть термопластиком. Убедитесь, что в цоколе отсутствуют люфты и механические дефекты. Также в любом магазине есть возможность подключить лампу к электрической сети, чтобы проверить ее работоспособность. Сделав это, взгляните на излучаемый свет. Используйте фотокамеру на смартфоне, чтобы убедиться в отсутствии мерцания и пульсации. Ни в коем случае не покупайте лампу, которая мерцает при работе.

Полученной информации по устройству и принципу работы светодиодной лампы может быть недостаточно для выбора качественного осветительного прибора, характеризующегося безопасностью, надежностью и долговечностью. Также нужно учитывать другие критерии, включая характеристики и производителя, о чем подробно описано в этой статье.

Устройство светодиодной лампы: способы сборки и конструктивные элементы

Как работают светоизлучающие диоды

Диод - это простейший полупроводниковый прибор. Вообще говоря, полупроводник - это материал с различной способностью проводить электрический ток. Большинство полупроводников сделано из плохого проводника, в который были добавлены примеси (атомы другого материала). Процесс добавления примесей называется легированием .

В случае светодиодов материалом проводника обычно является арсенид алюминия-галлия (AlGaAs).В чистом арсениде алюминия-галлия все атомы идеально связываются со своими соседями, не оставляя свободных электронов (отрицательно заряженных частиц) для проведения электрического тока. В легированном материале дополнительные атомы изменяют баланс, либо добавляя свободные электроны, либо создавая дыры, по которым электроны могут уходить. Любое из этих изменений делает материал более проводящим.

Объявление

Полупроводник с дополнительными электронами называется материалом N-типа , так как в нем есть дополнительные отрицательно заряженные частицы.В материале N-типа свободные электроны перемещаются из отрицательно заряженной области в положительно заряженную.

Полупроводник с дополнительными дырками называется материалом P-типа , так как он фактически содержит дополнительные положительно заряженные частицы. Электроны могут прыгать от отверстия к отверстию, переходя из отрицательно заряженной области в положительно заряженную. В результате кажется, что сами отверстия перемещаются из положительно заряженной области в отрицательно заряженную.

Диод состоит из секции материала N-типа, прикрепленной к секции материала P-типа, с электродами на каждом конце. Это устройство проводит электричество только в одном направлении. Когда на диод не подается напряжение, электроны из материала N-типа заполняют дырки из материала P-типа вдоль стыка между слоями, образуя зону обеднения. В зоне истощения полупроводниковый материал возвращается в исходное изолирующее состояние - все отверстия заполнены, поэтому нет свободных электронов или пустых пространств для электронов, и электричество не может течь.

Чтобы избавиться от зоны истощения, вы должны заставить электроны двигаться из области N-типа в область P-типа, а дырки - в обратном направлении. Для этого вы подключаете сторону N-типа диода к отрицательному концу цепи, а сторону P-типа к положительному концу. Свободные электроны в материале N-типа отталкиваются отрицательным электродом и притягиваются к положительному электроду. Отверстия в материале P-типа перемещаются в другую сторону. Когда разница напряжений между электродами достаточно высока, электроны в зоне обеднения выталкиваются из своих отверстий и снова начинают свободно перемещаться.Зона истощения исчезает, и заряд перемещается по диоду.

Если вы попытаетесь пропустить ток другим способом, когда сторона P-типа подключена к отрицательному концу цепи, а сторона N-типа подключена к положительному концу, ток не будет течь. Отрицательные электроны в материале N-типа притягиваются к положительному электроду. Положительные отверстия в материале P-типа притягиваются к отрицательному электроду. Ток не течет через переход, потому что дырки и электроны движутся в неправильном направлении.Зона истощения увеличивается. (См. «Как работают полупроводники» для получения дополнительной информации обо всем процессе.)

Взаимодействие между электронами и дырками в этой установке имеет интересный побочный эффект - он генерирует свет!

.

Как работают светодиодные лампы

Хотя в наши дни вы не найдете светодиоды в слишком многих бытовых осветительных приборах, есть несколько веских причин, чтобы их было больше.

Во-первых, это снижение потребления энергии. Светодиодный метод получения света теряет гораздо меньше энергии на тепло, чем другие технологии освещения. Он значительно более эффективен, чем метод вакуума / нити накаливания, используемый в лампах накаливания - иногда примерно на 85 процентов эффективнее; и это даже примерно на 5 процентов эффективнее, чем подход с плазменной трубкой CFL [источник: Тауб].

Объявление

Один осветительный прибор с лампой накаливания мощностью 60 Вт потребляет около 525 кВтч электроэнергии в год; поместите в этот светильник светодиодную лампу GeoBulb, и годовое потребление энергии будет примерно 65 кВтч [источник: Sundance]. Годовое сокращение CO 2 исчисляется сотнями фунтов на одну лампу.

Но энергоэффективность - это только часть истории. Другая часть - это экономия времени: вы можете прожить 20 лет без замены светодиодной лампы.Твердотельные лампы, такие как светодиоды, являются более стабильными источниками света, чем лампы накаливания или люминесцентные лампы, и разница поразительна: срок службы обычной лампы накаливания составляет около 750 часов; Геобульба действует 30 000 часов [источник: Sundance].

Некоторые светодиодные лампы служат до 50 000 часов [источник: Linden].

Из-за этого преимущества по времени все становится немного более запутанным, когда вы переходите к вопросу о стоимости. Замена 60-ваттной светодиодной лампы стоит около 100 долларов, и даже версии с меньшей мощностью, используемые для таких вещей, как точечное освещение, будут стоить от 40 до 80 долларов.Это по сравнению с лампой накаливания за 1 доллар и люминесцентной лампой за 2 доллара.

Реальность такова, что даже при цене 100 долларов за одну лампочку светодиоды в конечном итоге сэкономят деньги, потому что вам понадобится только одна лампа каждые десять или два года, и вы тратите меньше денег на домашнее освещение, которое может составлять около 7 процентов ваш счет за электричество [источник: Greener Choices]. Но первоначальная стоимость по-прежнему остается непомерно высокой. Многие люди просто не могут потратить тысячу долларов на 10 лампочек.

Другая основная проблема светодиодов - ухудшение цвета света до чего-то голубоватого - решена в новых моделях.Светодиоды могут давать такой же мягкий белый свет, как и обычные лампы. (Хотя Energy Star действительно рекомендует искать этикетку Energy Star при покупке светодиодных ламп, поскольку организация проверяет стабильность цвета в рамках своих критериев сертификации.)

Так что цена действительно единственная проблема светодиодных лампочек прямо сейчас. Но это может скоро измениться.

.

Как работают светоизлучающие диоды и светодиодные фонари?

Современные светодиодные технологии зарекомендовали себя. Многие преимущества обеспечивают рост светодиодного освещения во всех сферах жизни. Но как вообще работают светодиоды и светодиодные лампы? Это руководство вводит свет в темноту и показывает структуру и функциональность светодиодов и светодиодных ламп. Эта информация даст вам хорошее представление о современных технологиях освещения.

Как работает светодиод?

Аббревиатура LED означает LED .Это означает столько же, сколько и светоизлучающий полупроводниковый компонент. Базовая функциональность проста, потому что светодиоды состоят всего из нескольких компонентов. Сюда входят:

  • Анод
  • Катод
  • Связующий провод
  • Светодиодный чип
  • Отражающая полость
  • Эпоксидная линза

Светодиодная структура

Светодиодный чип находится в небольшой отражающей полости на катоде. Золотая проволока, также известная как соединительная проволока, создает ток между анодом и катодом.Линза из пластика или эпоксидной смолы скрепляет все части вместе и в то же время обеспечивает хорошее распределение света. Светодиодный чип представляет собой полупроводниковый кристалл и состоит из двух слоев полупроводникового материала, легированного по-разному.

В одном полупроводниковом слое имеется избыток положительных носителей заряда. В другом слое преобладают отрицательные носители заряда. Если на анод и катод подается напряжение, между слоями полупроводника возникает поток электронов.В результате высвобождается энергия, в результате чего возникают небольшие вспышки света. Светодиод излучает фотоны, которые мы воспринимаем как видимый свет.

Светодиодный чип имеет длину края всего около одного миллиметра и излучает свет в форме квази-точки. Только через отражающую полость свет направляется в верхнюю половину светодиода. Пластиковая линза в зависимости от ее состава соответствующим образом распределяет свет в комнате. Кроме того, пластиковый композит делает светодиод нечувствительным к ударам и вибрации.

Длина волны светодиода

Длину излучаемого света можно очень точно определить путем легирования полупроводникового материала. В зависимости от области применения светодиоды могут изготавливаться с разными цветами света и цветовой температурой. Из-за узкого диапазона длин волн никакое другое излучение в инфракрасном или УФ-диапазоне не генерируется.

Другие типы светодиодов

Основные функции светодиодов и их структура были описаны ранее. Есть еще разные подтипы светодиодов.Светодиоды SMD и COB в основном используются для светодиодных осветительных приборов и светильников.

Светодиодная структура SMD

Аббревиатура SMD означает устройство для поверхностного монтажа. Светодиоды SMD могут быть установлены непосредственно на печатной плате источника света. При такой конструкции корпус также служит радиатором для светодиодного чипа. Это обеспечивает хороший отвод тепла, что снижает температуру чипа. Благодаря хорошему охлаждению светодиод может работать с более высоким током, что позволяет достичь высокого КПД.

SMD светодиоды также довольно компактны. По этой причине их часто используют в большом количестве в одном источнике света. Например, в лампах с большим углом луча обычно по кругу располагаются несколько светодиодов. Комбинируя разные типы светодиодов, можно также получить определенные цветовые спектры.

COB LED Structure

COB LED - это дальнейшее развитие варианта SMD. Аббревиатура COB означает чип на плате. Здесь светодиодная микросхема крепится непосредственно к печатной плате с помощью термоклея.Благодаря прямому контакту между полупроводником и платой рассеиваемая мощность может рассеиваться даже лучше, чем в версии SMD. Это дополнительно улучшает охлаждение, что еще больше увеличивает эффективность.

Благодаря сверхкомпактной конструкции, COB LED можно использовать для изготовления светодиодных светильников любой мыслимой формы. Многие футуристические конструкции ламп стали возможны только благодаря технологии COB. С другой стороны, высокая плотность микросхемы позволяет генерировать высокий световой поток в минимальном пространстве.Это позволяет, помимо прочего, производить очень яркие светодиодные прожекторы.

Как работают светодиодные фонари?

Функциональность светодиодной лампы стала намного сложнее по сравнению с обычными источниками света. Помимо одного или нескольких светодиодов, светодиодная лампа также имеет другие компоненты. К ним относятся:

  • Светодиоды
  • Драйвер светодиода
  • Источник питания
  • Оптика

Базовая структура и функциональность светодиода уже описаны в предыдущих параграфах.В большинстве модернизированных светодиодных источников света используются в основном светодиоды SMD. В современных светодиодных светильниках широко используется технология COB. Это позволяет проектировать современные светильники, которые были невозможны при использовании стандартных форм модифицированных ламп.

Генерировать рабочее напряжение

Светодиодные лампы доступны для сетевого напряжения 120 В, а также для низкого напряжения 12 В или 24 В. Светодиодные лампы для сетевого напряжения имеют встроенный блок питания, который генерирует низкое напряжение от 120В. Светодиодные лампы низкого напряжения не имеют встроенного источника питания, но должны быть подключены к внешнему светодиодному трансформатору.

Драйвер светодиода в качестве источника питания

Полупроводниковый кристалл светодиода должен работать в правильной рабочей точке. Только тогда можно достичь высокой эффективности и постоянной яркости. Этого было бы трудно достичь с помощью чистого источника напряжения из-за качественного рассеяния при массовом производстве светодиодов. По этой причине светодиод работает от источника постоянного тока, называемого драйвером светодиода.

Драйвер светодиода, особенно для светодиодных ламп недорогого диапазона, иногда состоит только из резистора, который регулирует ток.Во многих высоковольтных лампах источник питания и драйвер часто объединены в одну схему, которую еще называют светодиодным драйвером.

Белый свет через смешение света

Белый свет обычно требуется для освещения. Однако светодиоды не могут генерировать этот свет напрямую. Один из способов получения белого света - это смешать три светодиода с красным, зеленым и синим цветами. Управляя им с разной яркостью, эта комбинация позволяет установить любой другой цвет RGB в дополнение к белому.В то же время этот вариант еще и самый дорогой.

Поэтому в большинстве светодиодных ламп белый свет излучается другим способом. Здесь используются синие светодиодные чипы со слоем люминофора. Синий в сочетании с желтоватым слоем люминофора дает световую смесь, которая выглядит как белый свет. Этот производственный процесс также определяет цветовую температуру, например, холодный белый, натуральный белый или теплый белый.

Оптика для распределения света

Оптика светодиодной лампы обеспечивает желаемое распределение света.Многие лампы содержат рассеивающие линзы или рассеивающие диски. Это позволяет регулировать угол луча и достигать однородного излучения. Комбинируя расположение светодиодов в корпусе лампы с оптикой, можно получить лампу практически любой желаемой формы.

Заключение

Теперь у вас есть обзор конструкции и функций светодиодов и светодиодных фонарей. Сложность увеличилась по сравнению со старыми источниками света. Однако преимущества и возможности светодиодной техники буквально затмевают старые источники света.

.

Как работает диод и светодиод? | EAGLE

С возвращением, капитаны компонентов! Сегодня пришло время повысить уровень своих знаний и перейти от простых пассивных компонентов к области полупроводниковых компонентов. Эти детали оживают, когда соединяются в цепь, и могут управлять электричеством разными способами! Вы будете работать с двумя полупроводниковыми компонентами: диодом и транзистором. Сегодня мы поговорим о диоде, печально известном способе управления, который позволяет электричеству течь только в одном направлении! Если вы видели светодиод в действии, значит, вы уже далеко впереди, давайте приступим.

Управляйте потоком

Диод хорошо известен своей способностью контролировать прохождение электрического тока в цепи. В отличие от пассивных компонентов, которые бездействуют, сопротивляясь или накапливая, диоды активно задействуют приливы и отливы тока, протекающего по нашим устройствам. Есть два способа описать, как ток будет или не течь через диод, и они включают:

  • С опережением. Когда вы правильно вставляете батарею в цепь, ток будет проходить через диод; это называется состоянием с прямым смещением.
  • Обратно-смещенный. Когда вам удастся вставить батарею в цепь в обратном направлении, ваш диод блокирует прохождение любого тока, и это называется состоянием с обратным смещением.

Простой способ визуализировать разницу между состояниями прямого и обратного смещения диода в простой схеме

Хотя эти два термина могут показаться слишком сложными, представьте диод как переключатель. Он либо закрыт (включен) и пропускает ток через него, либо открыт (выключен), и ток не может течь через него.

Полярность диодов и символы

Диоды - это поляризованные компоненты, что означает, что они имеют очень специфическую ориентацию, и для правильной работы их необходимо подключить в цепь. На физическом диоде вы заметите две клеммы, выходящие из формы жестяной банки посередине. Одна сторона - это положительный вывод, называемый анодом . Другой вывод - это отрицательный конец, называемый катодом . Возвращаясь к нашему потоку электричества, ток может течь только в диоде от анода к катоду, а не наоборот.

Вы можете определить катодную сторону физического диода, посмотрев на серебряную полоску рядом с одним из выводов. (Источник изображения)

Вы можете легко обнаружить диод на схеме, просто найдите большую стрелку с линией, проходящей через нее, как показано ниже. У некоторых диодов и анод, и катод помечены как положительный и отрицательный, но простой способ запомнить, в каком направлении течет ток в диоде, - это следовать направлению стрелки.

Стрелка на символе диода указывает направление протекания тока.

В наши дни большинство диодов изготовлено из двух самых популярных полупроводниковых материалов в электронике - кремния или германия. Но если вы знаете что-нибудь о полупроводниках, то знаете, что в своем естественном состоянии ни один из этих элементов не проводит электричество. Так как же заставить электричество проходить через кремний или германий? С помощью небольшого волшебного трюка под названием допинг.

Легирование полупроводников

Странные полупроводниковые элементы. Возьмем, к примеру, кремний.Днем это изолятор, но если вы добавите в него примеси с помощью процесса, называемого допингом, вы придадите ему магическую силу проводить электричество ночью.

Благодаря своим двойным свойствам как изолятор, так и проводник, полупроводники нашли свою идеальную нишу в компонентах, которые должны контролировать прохождение электрического тока в виде диодов и транзисторов. Вот как работает процесс легирования в типичном куске кремния.

  • Расти.Во-первых, кремний выращивают в строго контролируемой лабораторной среде. Это называется чистой комнатой, то есть в ней нет пыли и других загрязнений.
  • Допинг это отрицательно. Теперь, когда кремний вырос, пришло время легировать его. Этот процесс может происходить одним из двух способов. Первый - это легирование кремния сурьмой, которая дает ему несколько дополнительных электронов и позволяет кремнию проводить электричество. Он называется кремнием n-типа или кремнием отрицательного типа, потому что в нем больше отрицательных электронов, чем обычно.
  • Допинг положительно. Силикон можно легировать и в обратном направлении. Добавляя бор к кремнию, он удаляет электроны из атома кремния, оставляя группу пустых дырок там, где должны быть электроны. Это называется кремнием p-типа или положительного типа.
  • Объедините . Теперь, когда ваши кусочки кремния легированы как положительно, так и отрицательно, вы можете соединить их вместе. Соединяя кремний n-типа и p-типа вместе, вы создаете так называемое соединение.

Именно на этом перекрестке, который можно представить себе как некую нейтральную зону, происходит вся магия диода.Допустим, вы соединяете кремний n-типа и p-типа, а затем подключаете батарею, создавая цепь. Что случится?

В этом случае отрицательная клемма подключена к кремнию n-типа, а положительная клемма подключена к кремнию p-типа. А между двумя кусками кремния - нейтральная зона? Что ж, он начинает сжиматься, и начинает течь электрический ток! Это прямое смещение диода, о котором мы говорили в начале.

Правильное подключение батареи к кремнию n-типа и p-типа позволяет току течь через переход.(Источник изображения)

Теперь предположим, что вы подключаете батарею наоборот: отрицательная клемма подключена к кремнию p-типа, а положительная клемма - к кремнию n-типа. Здесь происходит то, что нейтральная зона между двумя кусками кремния становится шире, и ток вообще не течет. Это состояние с обратным смещением, которое может принять диод.

Подключите аккумулятор в непреднамеренном направлении, и ваш диод остановит ток от протекания между n-типом и p-типом.(Источник изображения)

Прямое напряжение и пробои

Когда вы работаете с диодами, вы узнаете, что для того, чтобы один пропускал ток, требуется очень определенное количество положительного напряжения. Напряжение, необходимое для включения диода, называется прямым напряжением (VF). Вы также можете увидеть это как напряжение включения или напряжение включения.

Что определяет это прямое напряжение? Полупроводник , материал и типа . Вот как он распадается:

  • Кремниевые диоды.Для использования кремниевого диода потребуется прямое напряжение от 0,6 до 1 В.
  • Германиевые диоды. Для использования диода на основе германия потребуется более низкое прямое напряжение около 0,3 В.
  • Другие диоды. Специализированные диоды, такие как светодиоды, потребуют более высокого прямого напряжения, тогда как диоды Шоттки (см. Ниже) потребуют более низкого прямого напряжения. Лучше всего свериться с таблицей данных для вашего конкретного диода, чтобы определить его номинальное прямое напряжение.

Я знаю, что все это время мы говорили о диодах, позволяющих току течь только в одном направлении, но это правило можно нарушить.Если вы приложите огромное отрицательное напряжение к диоду, вы действительно сможете изменить направление его тока! Конкретная величина напряжения, которая вызывает этот обратный поток, называется напряжением пробоя . Для обычных диодов напряжение пробоя находится в диапазоне от -50 до -100 В. Некоторые специализированные диоды даже предназначены для работы при этом отрицательном напряжении пробоя, о котором мы поговорим позже.

Семейство диодов - наконец вместе

Существует множество диодов, каждый из которых имеет свои собственные особенности.И хотя у каждого из них есть общая основа ограничения потока тока, вы можете использовать эту общую основу для создания множества различных применений. Давайте посмотрим на каждого члена семейства диодов!

Стандартные диоды

Ваш средний диод. Стандартные диоды имеют умеренные требования к напряжению и низкий максимальный ток.

Стандартный диод для повседневного использования, который можно приобрести в компании Digi-Key. Обратите внимание на серебряную полосу, которая отмечает катодный конец. (Источник изображения)

Выпрямительные диоды

Это более мощные аналоги стандартных диодов и имеют более высокий максимальный ток и прямое напряжение.В основном они используются в источниках питания.

Более мощные родственники стандартного диода, разница состоит в большем номинальном токе и прямом напряжении.

Диоды Шоттки

Это необычный родственник семейства диодов. Диод Шоттки пригодится, когда вам нужно ограничить величину потери напряжения в вашей цепи. Вы можете идентифицировать диод Шоттки на схеме, ища типичный символ диода с добавлением двух новых изгибов (S-образной формы) на катодном выводе.

Найдите изгибы на катодном конце диода, чтобы быстро определить, что это изгибы Шоттки.

Стабилитроны

Стабилитроны - это черная овца в семействе диодов. Эти парни используются для того, чтобы посылать электрический ток в обратном направлении! Они делают это, используя напряжение пробоя, которое мы обсуждали выше, также называемое пробоем Зенера. Воспользовавшись этой возможностью пробоя, диоды Зенера велики на создание стабильного опорного напряжения в определенном месте в цепи.

Стабилитрон разительно отличается от остальных диодов семейства и может передавать ток от катода к аноду. (Источник изображения)

Фотодиоды

Фотодиоды - это непокорные подростки из семейства диодных. Вместо того, чтобы просто пропускать ток через цепь, фотодиоды улавливают энергию источника света и превращают ее в электрический ток. Вы найдете их для использования в солнечных панелях, а также в оптических коммуникациях.

Фотодиоды поглощают все это, улавливая энергию света и превращая ее в электрический ток.(Источник изображения)

Светодиоды (LED)

Яркие звезды семейства диодов. Как и стандартные диоды, светодиоды позволяют току течь только в одном направлении, но с изгибом! При подаче правильного прямого напряжения эти светодиоды загораются яркими цветами. Но вот загвоздка: светодиоды определенного цвета требуют разного прямого напряжения. Например, для синего светодиода требуется прямое напряжение 3,3 В, а для красного светодиода требуется только 2,2 В.

Что делает эти светодиоды настолько популярными?

  • Эффективность .Светодиоды излучают свет с помощью электроники, не выделяя тонны тепла, как традиционные лампы накаливания. Это позволяет им экономить тонну энергии.
  • Контроль. Светодиодами также очень легко управлять в электронной схеме. Пока перед ними установлен резистор, они обязательно будут работать!
  • Недорого. Светодиоды также очень недорогие и долговечные. Вот почему они так часто используются в светофорах, дисплеях и инфракрасных сигналах.

Светодиоды бывают разных форм и цветов, для каждого из которых требуется разное прямое напряжение! (Источник изображения)

Наиболее распространенное применение диодов

Поскольку диоды бывают самых разных форм, размеров и конфигураций, их использование в наших электронных схемах столь же богато! Вот лишь несколько примеров использования диодов:

Преобразование переменного тока в постоянный

Процесс преобразования переменного тока (AC) в постоянный ток (DC) может выполняться только диодами! Этот процесс выпрямления (преобразования) тока - это то, что позволяет вам подключить всю вашу повседневную электронику постоянного тока к розетке переменного тока в вашем доме.Есть два типа приложений преобразования, в которых играет свою роль диод:

  • Полуволновое выпрямление. Для этого преобразования требуется только один диод. Если вы отправляете сигнал переменного тока в цепь, то ваш единственный диод отсекает отрицательную часть сигнала, оставляя только положительный вход в виде волны постоянного тока.

    Одиночный диод в цепи однополупериодного выпрямителя, отсекающий отрицательный конец сигнала переменного тока. (Источник изображения)

  • Полноволновое мостовое выпрямление .В этом процессе преобразования используются четыре диода. И вместо того, чтобы просто отсекать отрицательную часть сигнала переменного тока, такую ​​как полуволновой выпрямитель, этот процесс фактически преобразует все отрицательные волны в сигнале переменного тока в положительные волны для сигнала готовности постоянного тока.

    Двухполупериодный мостовой выпрямитель делает шаг вперед, преобразуя весь положительный и отрицательный сигнал переменного тока в постоянный. (Источник изображения)

Управляющие скачки напряжения

Вы также найдете диоды, используемые в приложениях, где могут произойти неожиданные скачки напряжения.Диоды в этих приложениях могут ограничить любое повреждение, которое может произойти с устройством, поглощая любое избыточное напряжение, которое попадает в диапазон напряжения пробоя диода.

Защита вашего тока

Наконец, вы также найдете диоды, которые используются для защиты чувствительных цепей. Если вы хоть раз разбили аккумулятор неправильно и ничего не взорвалось, то можете поблагодарить за это свой дружелюбный диод. Размещение диода последовательно с положительной стороной источника питания гарантирует, что ток течет только в правильном направлении.

Пора освободиться от потока

Вот и все, контрольный диод и все его сумасшедшие члены семьи! У диодов есть масса применений: от питания этих ярких светодиодных ламп до преобразования переменного тока в постоянный. Но почему, несмотря на все эти удивительные применения, диод не получил такой же популярности, как транзистор или интегральная схема? Мы думаем, что дело в том, что на кухне слишком много поваров. Первый диод был открыт почти 150 лет назад, и с тех пор сотни инженеров и ученых приложили свои усилия, чтобы улучшить это открытие.Несмотря на долгую историю существования многих людей, диод до сих пор считается четвертым по значимости изобретением после колеса.

Знаете ли вы, что Autodesk EAGLE включает массу бесплатных библиотек диодов, которые вы можете начать использовать уже сегодня? Пропустите рутинную работу по созданию деталей, попробуйте Autodesk EAGLE прямо сегодня!

.

Смотрите также