Как устроена ксеноновая лампа


Принцип работы ксеноновых ламп

Ксенон на сегодняшнее время используется во многих автомобилях, то ли штатно, то ли при переоборудовании оптики. Не многие знают принципы работы ксеноновой лампы, хотя это очень важно. Именно поэтому данный материал мы посвятили именно принципу работы ксеноновых ламп. Ксеноновая лампа – это электрическое газоразрядное устройство, которое может создавать внутри колбы мощные, интенсивные импульсы белого цвета.

Конструкция ксеноновой автомобильной лампы

Лампа сконструирована из специальной трубки, хорошо запаянной, состоящей из прочного стекла или же надежного кварца. Внутри этой трубки находится смесь инертных газов под большим давлением. Большая часть всей смеси газов припадает на ксенон.

Внутри колбы также находится два электрода, обеспечивающие пропуск электрического тока и образование электрической дуги для розжига газа. Чтобы активизировать газ понадобится огромное количество энергии, превращающейся в последствии в высоковольтный импульс, благодаря специальному устройству – блоку розжига, принцип работы которого схож с трансформатором.

Стеклянный корпус изделия – это и есть трубка, которая может быть разной формы. Именно в трубку по обе вертикальные стороны впаиваются электроды, между которыми при подаче высоковольтного импульса от 23000 В дол 30000 В и активизируется электрическая дуга. В колбе есть и еще один электрод, сделанный в виде тонкой металлической дорожки, которая проходит вертикально сквозь всю трубку. Этот электрод необходим для ионизации газового состава и запуска разряда.

Принцип работы ксеноновых ламп

Принцип работы ксеноновых излучателей достаточно непростой и состоит из нескольких этапов.

  • Этап 1. Подача высоковольтного импульса от 23000 В до 30000 В, благодаря блоку розжига, который поступает в лампу.
  • Этап 2. Активизация электрической дуги.
  • Этап 3. Ионизация газа и пропуск через него тока под большим напряжением, что создает мощную вспышку белого света. Этот процесс является важным и обязательным, ведь он необходим для сокращения электрического сопротивления газа внутри колбы лампы. Ионизация активизируется путем той же подачи высоковольтного импульса от блока розжига, что активизирует электроды и выпускает ионы.
  • Этап 4. Проходящий ток через газ возбуждает атомы ксенона.
  • Этап 5. Активизированные атомы ксенона вынуждают переходить электроны на орбиты с характеристикой более высокой энергии.
  • Этап 6. Затем электроны возвращаются к первоначальным орбитам и при этом образуют энергию, выраженную в форме фотона, а это и обеспечивает выдачу насыщенного и интенсивного света.

Отметим, что газы в лампе находятся под высоким давлением, что и обеспечивает повышенную яркость. Степень давления зависит от размеров колбы лампы.

Спектр ксеноновых излучателей

Как и многие другие газы, благодарённый ксенон также имеет спектры.  Принцип свечения ксенона максимально схож с неонами. Излучение от такого источника человеку кажется идеально белоснежным, поскольку спектральные лини цвета распределяются по всей видимой полосе спектра для ксенона.

Цветность лампы очень важна и измеряется она в Кельвинах:

3000 Кельвинов Насыщенный желтый свет, идеальный для использования в ПТФ.
4300 Кельвинов Теплый белый свет, который максимально схож с солнечным, эффективен для использования в головной оптике.
5000 Кельвинов Насыщенно белоснежный свет, разрешенный для использования в головной оптике автомобилей.
6000 Кельвинов Белоснежный свет, имеющий небольшой оттенок голубого цвета, что стильно смотрится в головной оптике автомобилей.
7000 Кельвинов Голубой свет, который не используются для повседневной езды, поскольку обеспечивают низкую освещенность дороги.
8000 Кельвинов Синий цвет, также используемый в целях тюнинга автомобиля для шоу-каров.

Стандартная цветность ксенона, используемая на наших дорогах:


  • Цветность стандартного ксенона составляет 4300 Кельвинов. Это самый оптимальный тепло-белый свет, который необходим для качественного освещения дорожного полотна. Данный спектр обеспечивает освещение дороги, обочины. Не рассеивается и не кристаллизируется, что важно в плохих метеорологических условиях при дожде или же мокром асфальте.
  • Ксенон на 5000 Кельвинов также часто используется водителями, и обладает достаточно высокой эффективностью, хотя интенсивность света и освещенность дороги немного снижена, по сравнению со стандартным бело-теплым свечением в 4300 кельвинов. Такие лампы используются для ночных поездок, но не имеют максимального эффекта при сильном дожде или же туманности.
  • Ксенон на 6000 Кельвинов очень редко используется на наших дорогах, поскольку голубой – это спектр приближенный к синему, а поэтому он не обеспечивает качественное освещение дорожного полотна ни ночью, ни при погоде. Его яркость максимально снижена, по сравнению с предыдущими цветностями, что не может в полной мере гарантировать качественную и насыщенную видимость дороги для водителя.

Как работают ксеноновые лампы и фонари

Криса Вудфорда. Последнее обновление: 13 февраля 2020 г.

У вас может быть всего лишь доля секунды, чтобы поймать жизненно важный фотография, а что, если это слишком темно, чтобы увидеть? Лампы-вспышки, заправленные газом под названием ксенон , являются ответ. Нажмите кнопку на камере, подождите несколько секунд, пока вспышка для зарядки, нажмите кнопку спуска затвора, чтобы сделать снимок и - ТРЕЩИНА! - у вас внезапно появляется весь необходимый свет.Вы также найдете ксеноновые лампы питание кинопроекторов, маяков и сверхярких автомобильных фар. Что такое ксеноновые лампы и как они работают? Это примеры того, что мы называем дуговые лампы, и они работают совершенно иначе, чем обычные лампы. Рассмотрим подробнее!

Фото: Маячная лампа: требуется очень яркий свет, чтобы выбросить луч на много миль в море, даже с помощью мощной линзы Френеля (концентрические круги, которые вы можете видеть на заднем плане). Вот почему многие маяки питаются от сверхъярких ксеноновых ламп.Фото Гэри Николса любезно предоставлено ВМС США.

Как работают дуговые лампы?

Все лампы излучают свет, но не все работают одинаково. Лампы накаливания (наши традиционные светильники для дома) излучают свет, пропуская электричество через тонкую металлическую нить (проволоку), поэтому она сильно нагревается и горит ярко. Люминесцентные лампы очень разные: они пропускают электричество через газ, чтобы сделать невидимый ультрафиолетовый свет, который преобразуется в свет, который мы видим (видимый свет), когда он проходит через белое внутреннее покрытие стеклянной трубки лампы, заставляя ее ярко светиться (или флуоресценция).

Фото: прикрепление ксеноновой лампы-вспышки к плавающему маркеру. Фото Джермейна М. Раллифорда любезно предоставлено ВМС США.

Как и неоновые лампы, ксеноновые лампы являются примерами дуговые лампы . Дуговая лампа немного похожа на небольшую вспышку молнии, происходящую под очень контролируемым условия внутри стеклянной трубки заполнен газом под очень низким или очень высоким давлением (в зависимости от типа лампы). На двух концах трубки есть металлические контакты, называемые электродами, подключаются к источнику высокого напряжения.

Откуда свет? При включении питания газ атомы внезапно оказываются под невероятной электрической силой и разделить на более мелкие части. Это называется ионизацией (или ионизацией газа). Сломанные части атомов (положительно заряженные ионов и отрицательно заряженные электроны) затем падают внутрь. в противоположных направлениях вдоль трубки, при этом электроны устремляются к положительному электроду, а ионы - в другую сторону, образуя электрический ток.Заряженные ионы врезаются в нейтральные атомы и в электроды, испускание энергии в виде вспышки света, называемой дугой это эффективно преодолевает зазор между электродами - как молния. Это пример электрического разряда, поэтому лампы его также называют Газоразрядные лампы . Больше света излучают сами электроды, которые при этом становятся невероятно горячими и ярко горят. Типичные температуры превышают 3000 ° C или 5400 ° F, поэтому электроды обычно изготавливаются из вольфрама, металла с самой высокой температурой плавления (приблизительно 3400 ° C или 6200 ° F).

Цвет света зависит от атомной структуры используемого газа (мы объясняем это более подробно в нашей статье о неоновых лампах). В неоновой лампе излучаемый свет красный; в ртутной лампе это более холодный и голубой свет; в ксеноновой лампе это намного более белый свет, чем естественный дневной свет (солнечный свет). В ртутно-ксеноновых лампах ксенон и ртуть работают вместе, создавая более равномерный световой спектр в более широком диапазоне длин волн.


Иллюстрация: Как три разных типа дуговых ламп производят свет трех разных цветов (модели длин волн).Ртуть излучает более синий свет (более короткие длины волн) и немного невидимого ультрафиолета, в то время как ксенон дает более естественный и даже видимый свет (и довольно много невидимого инфракрасного). Как и следовало ожидать, ртутно-ксеноновые лампы представляют собой компромисс, сбалансированный в более широком диапазоне длин волн.

Кто изобрел дуговые лампы?

Фото: Основная концепция дуговой лампы. Электрический разряд проходит между двумя угольными электродами, испуская свет.

Строго говоря, мы используем термин дуговая лампа для обозначения одного, определенного типа дуговая лампа с угольными электродами и воздухом между ними.До того, как Эдисон, Свон и их современники усовершенствовали лампы накаливания, такие дуговые лампы были действительно единственным типом электрического света в наличии. Они были изобретены в 1807 году (примерно за 70 лет до того, как Эдисон усовершенствовал свою лампу) британским химиком. Сэр Хэмфри Дэви (1778–1829).

Дэви обнаружил, что он может зажечь электрический свет, подключив два угольных электрода (немного похожих на карандаши) к высоковольтному источнику питания. Первоначально он держал электроды касающимися друг друга. Постепенно, раздвигая их, он обнаружил арочный луч света, перекрывающий промежуток между ними - отсюда и название «дуговые» лампы.Дуговые лампы были не очень практичны: они требовали сильный электрический ток заставлял их работать, а высокая температура дуги быстро сожгла угольные электроды в воздух. «Огромный» электрический ток - это не преувеличение: Дэви пришлось использовать батарею с 2000 отдельными элементами, чтобы получить дугу в 10 см (4 дюйма).

Современные лампы накаливания, появившиеся в результате усовершенствования дуговых ламп двумя способами. Воздушный зазор был заменен на нить накала, поэтому можно использовать более низкие напряжения и токи. Вся лампа также была запечатана внутри стеклянной колбы, наполненной благородным газ для предотвращения сгорания нити в кислороде воздуха.Благодаря этому лампа прослужила намного дольше.

Какие бывают ксеноновые лампы?

Ксеноновые лампы бывают двух различных типов: непрерывно светящие и мигающие.

Ксеноновые лампы-вспышки

Фото: вот очень маленькая ксеноновая лампа-вспышка внутри цифрового камера. Черный и красный провода соединяют два электрода на противоположных концах лампы с большим электролитическим конденсатор (это черный цилиндр, который вы можете увидеть в верхнем левом углу фотографии).Объектив камеры - это черный кружок под вспышкой.

В ксеноновых фотовспышках свет буквально представляет собой вспышку: его хватает на микросекунда (одна миллионная секунды) примерно до двадцатой секунды (нет никакой реальной необходимости в том, чтобы он длился дольше, так как это занимает столько времени, чтобы сделать фотографию) и это примерно в 10–100 раз ярче, чем свет от обычной лампы накаливания. Один из способов получить такую ​​яркую вспышку - использовать источник питания очень высокого напряжения, но это обычно не доступно в таком маленьком и портативном устройстве, как камера.Вместо этого в камерах используется большой конденсатор (устройство для временного хранения электроэнергии). Его задача - создать высоковольтный заряд, достаточно большой, чтобы вызвать разряд в лампе-вспышке, используя только маленькие батарейки низкого напряжения камеры. Это требует времени, поэтому часто приходится ждать несколько секунд, чтобы сделать снимок со вспышкой. Как только сработала вспышка, ксенон в трубке возвращается. в исходное непроводящее состояние. Если вы хотите сделать еще одну фотографию со вспышкой, вам нужно подождать, пока конденсатор снова зарядится, чтобы весь процесс можно было повторить.

Фотовспышки, которые работают таким образом, были изобретены в 1931 году американским инженером-электриком и фотографом Гарольдом Э. Эдгертоном (1903–1990), которому в 1944 году был выдан патент США 2 358 796 на эту идею. В этом патенте он объяснил, как возникает высокое напряжение:

«... вызывает ионизацию газа в лампе-вспышке, создание проводящего пути через вспышку лампа, позволяющая [конденсатору] разрядиться через это. Возникающая высоковольтная пусковая искра через фонарик даст очень яркая вспышка с очень короткой выдержкой продолжительность.Время, прошедшее между закрытием кнопочный переключатель и вспышка света от лампы-вспышки очень кратко. Следовательно, возможно произвести эту очень яркую вспышку света в любой желаемый момент для фотографировать. Когда [конденсатор] полностью разряжен, лампа-вспышка гаснет, и цикл готов к повторению ».


Работа: как работала лампа-вспышка Гарольда Эдгертона. Для простоты я только что выбрал здесь несколько ключевых компонентов.Стеклянная лампа (красная, слева, 92) окружена полированным отражателем, чтобы сосредоточить свет на предмете, который вы фотографируете (серый, слева, 25). Он содержит ксеноновую лампу-вспышку (желтый, 18), активируемую электродами (зеленый, 94), срабатывающую от вакуумной лампы (фиолетовый, 1) и питающуюся от конденсатора (синий, средний, 11), о чем предположил Эдгертон. 28 мкФ заряжены примерно до 2000 вольт. Лампа-вспышка может питаться либо от традиционной розетки (бирюзовый, справа, 71), либо от переносного аккумулятора (темно-зеленый, внизу, 69).Они подаются на трансформатор (оранжевый, 45), который вырабатывает высокое напряжение, необходимое для зарядки конденсатора. Лампа может включаться автоматически затвором камеры (серый, слева, 66) или вручную нажатием кнопки справа (51). Иллюстрация из патента США 2 358 796: фотография со вспышкой, сделанная Гарольдом Эдгертоном, любезно предоставлена ​​Бюро по патентам и товарным знакам США.

Другие ксеноновые лампы

Другие виды ксеноновых ламп больше похожи на неоновые лампы. и постоянно излучают меньшее количество света.Вместо прохождения огромное количество электричества через газ очень быстро произвести внезапная "дуга" света, они используют меньшее, более стабильное напряжение для производят постоянный разряд яркого света. Лампы для кинопроекторов и маяковые лампы работать таким образом.

Ксеноновые фары HID

Xenon HID (высокоинтенсивный разряд) в фарах используются относительно небольшие лампы с крошечным дуговым зазором между электродами (всего 2 мм или 0,1 дюйма). Изобретенные Philips в начале 1990-х годов, они утверждают, что «на 50% больше света на дороге». производят как более белый, так и более яркий свет, чем стандартные фары.HID-светильники также более эффективны, производя больше света от лампы с меньшей мощностью. Так как они меньше, они позволяют дизайнерам больше гибкости при стилизации передняя часть автомобиля более аэродинамична, что может привести к гораздо большей экономии топлива. Что касается недостатков, они действительно излучают ультрафиолетовое излучение, и им нужны встроенные фильтры, чтобы предотвратить это. повреждение компонентов лампы. Как и люминесцентные лампы, HID-лампы также нуждаются в устройстве. называется балластом , компактной электронной схемой, обеспечивающей высокий пуск напряжение для создания начальной дуги в лампе, затем регулирует ток до после этого поддерживайте постоянную яркость дуги.

К сожалению, яркие фары, которые подходят вам, могут не так хорошо работать с другими водителями, если они вызывают ослепление и блики. Вот почему скрытые огни не являются законными во всех странах / штатах. В некоторых странах они легальны только в том случае, если они установлены правильно (например, как «оригинальное оборудование» производителем автомобиля), не дооснащены (в качестве дополнительного комплекта), и если они «самовыравнивающиеся» (что означает, что они автоматически регулируются для компенсации неровностей, поэтому они продолжают указывать вниз на дорогу).


Изображение: Типичная ксеноновая HID-фара, разработанная General Electric в начале 1990-х годов. 1) Трубка из кварца или плавленого кварца; 2, 3) суженные части трубы, полученные нагреванием и поверхностным натяжением; 4,5) стержневидные вольфрамовые электроды; 6,7) Молибденовые свинцы. Трубка содержит смесь ртути, галогенидов металлов и газообразного ксенона, а зазор между электродами составляет примерно 2–3 мм. Изображение, любезно предоставленное Управлением по патентам и товарным знакам США, из патента США 5,121,034: Акустический резонанс работы ксенон-металлогалогенных ламп.

Что вообще такое ксенон?

Иллюстрация: Периодическая таблица химических элементов, показывающая положение ксенона. Обратите внимание на то, как все закончилось справа с благородными газами и ближе к низу группы 18. Это говорит о том, что атомы ксенона относительно тяжелые, вот почему ксенон тяжелее воздуха.

Вы слышали о неоне? Ксенон аналогичный. Гелий, неон, аргон, криптон, ксенон и радон - химические элементы из части Периодическая таблица, которую мы называем благородными газами (когда-то назывались «инертными газами», потому что они на самом деле не так хорошо реагируют с другими элементами).Если вы вспомните школьную химию, благородные газы - это элементы в крайнем правом столбце.

На что похож ксенон? У него нет цвета, вкуса или запаха, но он присутствует в воздухе вокруг нас в мельчайших подробностях. количества - примерно одна молекула ксенона на каждые 20 миллионов молекул других газов. Ксенон атомы имеют атомный номер 54 (намного тяжелее, чем атомы кислорода или азота), поэтому газообразный ксенон примерно в 4½ раза тяжелее воздуха: если вы ищете ксенон, смотрите ближе к земле! Ксенон - это газ на Земле, потому что он плавится примерно при −111 ° C (−168 ° F) и кипит при −107 ° C (−161 ° F).

Кто открыл ксенон?

Большинство благородных газов, включая ксенон, были обнаружены шотландским химиком. Сэр Уильям Рамзи (1852–1916), получивший Нобелевскую премию по химии в 1904 году за свою работу. Согласно с Шведская королевская академия наук, присудившая премию:

«Открытие совершенно новой группы элементов, из которых ни один представитель не был известен с какой-либо достоверностью, является чем-то совершенно уникальным в истории химии, поскольку по сути является достижением в науке особой важности.Тем более примечательным является этот прогресс, когда мы вспоминаем, что все эти элементы являются компонентами атмосферы Земли, и что, хотя они, очевидно, настолько доступны для научных исследований, они так долго сбивали с толку выдающихся ученых ... "

Цитата из выступления профессора Я.Э. Седерблома, президента Шведской королевской академии наук, 10 декабря 1904 г.

Узнать больше

  • Ксенон: факты и цифры из периодической таблицы онлайн Королевского химического общества.
  • Xenon: вводный видеоролик Школы химии Ноттингемского университета, посвященный Нил Бартлетт, химик-новатор, который показал, что благородные газы обладают большей реакционной способностью, чем когда-то считалось возможным.
  • Записная книжка сэра Уильяма Рамзи: Как невинно выглядящая лабораторная тетрадь помогла изменить наш мир.

Фото: "Хммм, может, ксенон все-таки не такой уж безреактивный?" Это то, что химики Джон Мальм, Генри Селиг и Говард Клаассен из Аргоннской национальной лаборатории, завершившейся в октябре 1962 года, когда они успешно получили эти сверкающие квадратные кристаллы тетрафторида ксенона - первого простого искусственного соединения ксенона, когда-либо произведенного.Одной из любимых шуток Мальма было то, что химики развешивали свои лабораторные халаты в тот день, когда кто-то обнаруживал твердое соединение благородного газа - именно этого он и его коллеги добились. Фото любезно предоставлено Аргоннской национальной лабораторией опубликовано на Flickr под лицензией Creative Commons.

.

Как работают неоновые лампы?

Криса Вудфорда. Последнее изменение: 12 февраля 2020 г.

Что заставляет ночные города шипеть и трещать с жизнью? Яркие неоновые лампы играют огромную роль. Если вы когда-нибудь видели огни танцы в Токио, Нью-Йорке или Лондоне, вы узнаете именно то, что я имею в виду. Целые улицы кажутся живыми в минуту включается неон. Строго говоря, лампы с неоновым газом может загорать только красный свет, и вам нужны другие газы, чтобы сделать другие цвета.Фактически, смешивая разные газы, можно сделать более 150 различных цветов «неонового» света - и раскрасьте ночь небо практически любого понравившегося цвета! Давайте подробнее рассмотрим, как эти вещи работают.

Фото: Выставка старинных неоновых вывесок в Американском музее вывесок в Цинциннати, штат Огайо. Фото Кэрол Хайсмит любезно предоставлено Библиотекой Конгресса США.

Как атомы заставляют свет оживать

Если вы читали нашу статью о свете, то знаете, что атомы светятся, когда поглощают энергию и становятся «возбужденными».В в возбужденном состоянии они также нестабильны, поэтому быстро выдают энергия, которую они поглотили, чтобы снова прийти в норму. Oни сделать это, отдавая крошечные пакеты световой энергии называемые фотонами.

Вы можете использовать эту идею, чтобы сделать электрический свет. Предположим, вы наполнили трубку атомами и заклейте его с обоих концов. Теперь поставил какую-то электрическую устройство внутри трубки, которое может подавать энергию атомам. Когда вы включаете питание, атомы будут постоянно получать возбуждены и излучают свет.Примерно так же люминесцентная лампа работает - и так же работает неоновая лампа. (Попутно отметим, что так работает и лазер, хотя в лазере исходящий свет превращается в сверхконцентрированный луч.)


Фото: неоновая вывеска флага Техаса «Одинокая звезда». в Институте техасских культур Техасского университета. Посмотрите на фото крупным планом справа, и вы увидите, что каждая «полоска» на флаге сделана из отдельной стеклянной трубки, немного похожей на люминесцентные лампы, которые могут быть у вас на кухне или в классе.«Звезды» состоят из одиночных трубок, которые были нагреты, согнуты под углом, пока горячие, затем дать снова остыть. Вы можете создавать всевозможные буквы, символы и другие формы, сгибая трубы таким образом. Фото Кэрол Хайсмит любезно предоставлено Библиотекой Конгресса США.

Почему неоновый свет красный?

Фото: Когда электроны в атомах неона возвращаются из «возбужденного» состояния в «основное» (невозбужденное) состояние, они испускают пакеты энергии, называемые квантами, которые наши глаза воспринимают как красный свет.В атомах аргона кванты больше, и наши глаза видят их как высокочастотный синий свет.

Уровни энергии внутри атомов немного похожи на ступеньки на лестнице или ступеньки по лестнице. Электроны могут быть только на ступеньках или ступенях, не на промежутках между ними. Это означает, что атомы могут поглощать или высвобождать энергии только в пакетах фиксированного размера (называемых квантами, множественное число квантов) и атомы различных химических элементов будут выдают кванты, которые больше или меньше, в зависимости от их четкая внутренняя структура.Атомы, излучающие большие кванты энергии создают более высокочастотный (более синий) свет, чем атомы, испускающие более мелкие кванты. В неоне выделяемые кванты энергии точно соответствуют со светом, который мы видим красным. Другие благородные газы делают свет разные цвета. Аргон, например, излучает синий свет, поэтому, когда вы видите "неоновые" лампы, сияющие синим, вы на самом деле смотрите на лампы наполнен аргоном, а не неоном. Есть два способа сделать другие цвета. В одну «неоновую» трубку можно залить более одного газа.Чтобы сделать зеленые трубочки, вам нужны неон и аргон вместе. Для фиолетового вы должны использовать аргон и ксенон. Вы также можете изменить цвет трубки, покрасив ее стенки. с люминофором разных цветов. Таким образом, вы можете использовать синий люминофор, нарисованный на красном неоновая трубка, чтобы сделать розовый свет, или зеленый люминофор с красным неоном, чтобы сделать оранжевый свет.

Почему «холодный катод»?

Иногда вы увидите неоновые вывески, которые называют примером освещения с холодным катодом. Это не делает смысл, если вы не понимаете, что различные другие электрические устройства используют горячий катод.Но что такое катод? ...

В лампе с двумя электрическими терминалами положительный вывод называется анодом (зеленый вывод на рисунке вверху), а отрицательный - катодом (синий вывод слева). В устройстве с горячим катодом катод необходимо нагреть с помощью нити накала (небольшого нагревательного элемента), чтобы электроны «выкипели» его поверхности, а затем сделали что-нибудь полезное. Горячие катоды использовались в электронных лампах, которые использовались в качестве компьютерных переключателей до того, как были изобретены транзисторы.Они также используются в электронно-лучевых трубках, таких как те, которые создают изображение в старомодном телевизоре (один из тех действительно старых, который торчит сзади) и графики-трассы на осциллографах. Свет, который вы видите на экране телевизора такого типа, исходит от энергии, выделяющейся при нагревании катода, поэтому он испускает электроны. Электроны (исторически известные как «катодные лучи») создают изображение на вашем телевизоре, когда они летят по трубке и врезаются в покрытый люминофором экран спереди. В неоновой лампе свет создается за счет возбуждения атомов газа в пространстве между двумя электродами, и нет необходимости в горячем катоде.Но то, что катод не нагревается, не означает, что неоновая лампа холодная; действительно, вы найдете неоновые лампы на удивление горячими, если встанете где-нибудь рядом с ними!

Кто изобрел неоновые лампы?

« 13 июня мы смогли анонсировать ... газ, который мы назвали« неоновым »или« новым »; он показал спектр, характеризующийся ярким светом цвета пламени, состоящим из множества красных, оранжевых и желтых линий.

Уильям Рамзи, Нобелевская лекция, 1904 г.

Очевидно, что неоновые лампы не существовали бы без неона, газа, открытого в июне 1898 года британским ученым Уильямом Рамзи (1852–1916).Работа Рамзи над неоном (и другими благородными газами, которые он называл «инертными газами атмосферы») принесла ему Нобелевскую премию по химии в 1904 году.

Изображение: Из патента США 1,125,476: Система освещения люминесцентными трубками Жоржа Клода. 19 января 1915 г., любезно предоставлено Управлением по патентам и товарным знакам США.

Примерно десять лет спустя французский инженер-химик Жорж Клод (1870–1960) изобрел неоновую лампу, зарегистрировав свой оригинальный французский патент 7 марта 1910 года.В том же году он провел свою первую впечатляющую публичную демонстрацию неонового освещения на Парижском автосалоне с использованием двух гигантских 12-метровых (39 футов) ламп. К 1913 году неоновое освещение использовалось во французских рекламных вывесках, хотя в Соединенных Штатах оно не распространялось до 1920-х годов.

Вот захватывающая иллюстрация из патента Клода в США, поданного в 1915 году. Вы можете увидеть главную неоновую трубку вверху (которую я окрашен в красный цвет), с двумя электродами (желтыми) на каждом конце. Клод обнаружил, что примеси в неоновом газе могут серьезно повлиять на то, насколько хорошо работают его лампы, поэтому части устройства в середине были разработаны для очистки неона до того, как трубка будет электрически зажжена, а затем удалена.Синяя линия - это связь с вакуумным насосом; зеленая колба содержит древесный уголь или древесный уголь для поглощения примесей; а в более крупном оранжевом сосуде внизу находится жидкий воздух. Вместе эти штуки осуществляли то, что Клод описал как «чрезвычайно эффективный процесс очистки на месте для получения высокой степени чистоты неона».

.

Что такое ксеноновые фары? | Автомобильные Библии

  • Дом
  • Категории
    • Принадлежности
      • Аксессуары для интерьера
      • Внешние аксессуары
      • Игрушки
    • Очистка и детализация
    • Электроника
      • Аудио
    • Двигатель и производительность
    • Инструменты
    • Шины и диски
    • Мотоциклы и велосипеды
    • Уход на дому
    • Кемперы на колесах
    • Внедорожники
    • Гарантии
      • Расширенные гарантии
      • Заводские гарантии
  • Блог
  • Инструменты
    • Калькулятор размера шин
    • Поиск колес и шин
  • О нас
  • Связаться