Как увеличить срок службы светодиодных ламп


Продление срока службы светодиодных ламп. Понижение тока/ремонт — Технический блог

(Last Updated On: 28.09.2020)

Как правило, в светодиодных лампах сильно завышен рабочий ток светодиодов, в связи с чем светодиоды деградируют и выходят через год — два из строя. Часть ламп после ремонта и понижения тока на 15-20% работают долго, но часть выходит из строя повторно, так как светодиоды сильно деградировали, и можно понижать ток сразу на 40-50%. Световой поток от светодиода при уменьшении с предельного тока до номинального падает не в 2, а в 1.5 раза, а значит яркость лампы не уменьшится в 2 раза.

В лампах ECO-C37 3.5Вт 4000K E14 на 220В/50Гц 1244 с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 0,62мкф (624 надпись и 400~) применяются кругляш S5-C37 3030 4-27,8мм с последовательно включенными 4 светодиодами на 15.8В, 55мА 0,87W, в итоге 63В, 3,5W. Нужно уменьшить ёмкость понижающего конденсатора до 0,47 мкф (474) и рабочим напряжение 400~ или 250~ соответственно. Таким образом рабочий ток 4-х светодиодов упадёт с 55 мА до 42 мА, напряжение с 63 до 58 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 27%.

В лампах 5.4W на AC 220В с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 1,3мкф (135 надпись и 400~) применяются последовательных 10 светодиодов на 6В, 90мА 0,54W, в итоге 60В, 5,4W. Нужно уменьшить ёмкость понижающего конденсатора до 1,0 мкф (105) и рабочим напряжение 400~ или 250~ соответственно. Таким образом рабочий ток 10-ти светодиодов упадёт с 90 мА до 60 мА, напряжение с 60 до 56 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 30%.

В лампах Ecola A50 LED 7W на AC 220В с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 1,1мкф (115 надпись и 400~) применяются последовательных 40 светодиодов на 3В, 57мА 0,54W, в итоге 120В, 6,6W. Нужно уменьшить ёмкость понижающего конденсатора до 1,0 мкф (105) и рабочим напряжение 400~ или 250~ соответственно. Таким образом рабочий ток 40-ти светодиодов упадёт с 57 мА до 52 мА, напряжение с 120 до 114 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 10%.

В лампах 3.5W Feron LB-40 E27 2700K на AC ~220-240V на основе драйвера микросхемы BP3122 (8 ног) и трансформатора 12x12x10мм применяются 6 последовательно (3 планки)-параллельно (по 2 светодиода на планке) включенных светодиодов на 3.13В 85мА, 0,3W. На светодиоды идёт 9.4В, 170мА, 1.6W. Для понижения тока нужно увеличить резистор c 1 на 2 ногу CS (BP3122) с 2.2 ома до 2.7 ома путём замены или допайки последовательно R50 — 0.5 омного резистора. Мощность снизится на 19%. Рабочее напряжение на светодиодах снизится до 9 Вольта, ток до 140мА, соответственно для одного светодиода 3,0В, 70мА, 0,21W.  На плате светодиодов надпись 3WG45B.

В лампах 5W на AC 85-265V на основе драйвера микросхемы BP3102 (8 ног) и трансформатора 10x10x10мм применяются 10 последовательно (по 5 в группе)-параллельно(в 2 группы) включенных светодиодов на 3,1В 90мА, 0,3W. На каждой планке стоят 2 светодиода из разных групп. На 2 группы светодиодов идёт 15,4В, 180мА, 3W. Для понижения тока нужно увеличить резистор на 4 ноге CS (BP3102) с 2.2 ома до 3.2 ома путём замены или допайки последовательно 1R0 — 1 омного резистора. Мощность снизится на 32%. Рабочее напряжение на группах светодиодов снизится до 15,2 Вольта, ток до 120мА, соответственно для одного светодиода 3,0В, 60мА, 0,2W.  На плате светодиодов надпись BL-5650.

В лампах 5W на AC 85-265V на основе драйвера микросхемы BP3102 (8 ног) и трансформатора 10x10x10мм применяются 8 последовательно (по 4 в группе)-параллельно(в 2 группы) включенных светодиодов на 3,2В 110мА, 0,35W. На каждой планке стоят 2 светодиода из одной группы. На 2 группы светодиодов идёт 12,8В, 220мА, 3W. Для понижения тока нужно увеличить резистор на 4 ноге CS (BP3102) с 1.8 ома до 2.8 ома путём замены или допайки последовательно 1R0 — 1 омного резистора. Мощность снизится на 36%. Рабочее напряжение на группах светодиодов снизится до 12,2 Вольта, ток до 140мА, соответственно для одного светодиода 3,0В, 70мА, 0,2W.

В лампах 9W E27 4000K на AC 220V на основе стабилизатора тока — микросхемы BP2832 2832 (8 ног) применяется круг A60-2835-26 из 2 параллельных линеек по 13 последовательно включенных светодиодов, на 6,15В 57мА, 0.35W. На все светодиоды идёт 80В, 114мА, 9W. Для понижения тока нужно увеличить резистор 1R65 до 1R8 или 2R0 ома путём замены (я поставил параллельно 2 и 22 ома, итогом 1,8 Ома). Мощность снизится на 9-18%, до 8W-7.5W. Рабочее напряжение на группах светодиодов снизится до 78 Вольт, ток до 52-47мА, соответственно для одного светодиода 6В, 52-47мА, 0,31-0,28W.

В лампах 10W E27 4200K на AC 230V FLL-A60-9-230-4K-E27 на основе стабилизатора тока — микросхемы BP9916C 9916C (8 ног) применяется круг A60-2835-1W-10C из 10 последовательно включенных светодиодов, на 8,9В 90мА, 0.8W. На все светодиоды идёт 89В, 90мА, 8W. Для понижения тока нужно увеличить параллельно включенные резисторы 5R9 и 6R8 ом, до 5R9+2R2 и 6R8 — с вычисленного 3.15 ома до 3.7 ома путём замены или допайки последовательно с 5,9 омным ещё 2,2 омного резистора. Мощность снизится на 17%, до 7W. Рабочее напряжение на группах светодиодов снизится до 87,6 Вольт, ток до 79мА, соответственно для одного светодиода 8,76В, 79мА, 0,7W.

В лампах 11W на AC 220V на основе стабилизатора тока — микросхемы BP9918C 9918C (3 ноги) применяются 18 последовательно включенных светодиодов, на 11В 55мА, 0,6W. На все светодиоды идёт 200В, 55мА, 11W. Для понижения тока нужно увеличить параллельно включенные резисторы 10 и 12 ом, до 20 и 12 ом (средняя нога CS BP9918C) — с вычисленного 5.5 ома до 7.5 ома путём замены или допайки последовательно с 10 омным ещё 10 омного резистора. Мощность снизится на 28%, до 8W. Рабочее напряжение на группах светодиодов снизится до 180 Вольт, ток до 44мА, соответственно для одного светодиода 10В, 44мА, 0,44W.

В лампах 12W на 220В 50Гц, 4000K E27 на основе стабилизатора тока — микросхемы BP2833A 2833A (8 ноги) на плате L2029-03-40 распаяны 23 последовательно включенных светодиода, на 3,2В 162мА, 0,52W. На все светодиоды идёт 73,6В, 162мА, 12W. Для понижения тока нужно увеличить параллельно включенные резисторы 2R10 и 2R70 ом, до 2R10 и 3R2 ом (8 нога BP2833A) — с вычисленного 1.18 ома до 1.26 ома путём замены. Мощность снизится на 8%, до 11W. Рабочее напряжение на группах светодиодов снизится до 73 Вольт, ток до 150мА, соответственно для одного светодиода 3.17В, 150мА, 0,47W.

В лампах Космос AC 220V 3W на основе стабилизатора тока 200ма —  микросхемы BP2812 (8 ног) (плата GL-0AC5W_V2.0) применяются 10 последовательно включенных светодиодов, на 30.7В 90мА, 2.8W, плата T2-P45-3W. От лабораторного БП ставлю 31.5В и эти светодиоды жрут 50ма и светят слабее, что говорит о нестандартном.. В схеме же осциллографом форма напряжения 31 В ровная, а до зеленого дросселя пульсации..

В лампах с али 15W Warm White 220V RoHS на основе стабилизатора тока 2 микросхемы MBI1802 (плата D44-22P-01 3611E) применяются 22 последовательно включенных светодиода, разорванных на 16 и 6 штук микросхемами. На светодиодах 38V и 109V постоянки соответственно, ток 57мА, 8.5W, в середине на U1 и U2 микросхемах 43V, всего 190V. На одном светодиоде 6.7V, 0.38W. От сети было потребление ~230V, 62мА на переменке. Внимание, эта лампа на фотоаппарате сильно мерцает! Обязательно паяем конденсатор от 4.7 uF до 10 uF на 400V после диодного моста и для кондёра есть много места в цоколе. После впайки кондёра ток возрастает до 92мА и светодиоды сгорят за 5 сек. Для уменьшения тока нужно на микросхемах 1802 вместо R1 и R2 по 13 Ом впаять два резистора по 15 Ом (ток упадёт до 50мА), если хай себе мерцает и не паять кондёр, или по 23 Ома (можно резюки стоя допаять последовательно в длину два по 10 Ом) (ток упадёт до 52мА), если паять кондёр.

В лампах Ming & Ben 18W 6500K 220V-240V 50/60H RoHS на основе 2-х стабилизаторов тока — 2-е микросхемы JZ1009AE (8 ног) (плата D49-18P-01 29045B 2019-D, если хотите посмотреть аналог, гуглите D44-22P-01) применяются 18 светодиодов из 6-ти последовательных секций по 3 параллельных светодиода на 162В 110мА, 18W (В схеме можно померить только импульсное напряжение после диодного моста 200В, и напряжение в разрыв цепи светодиодов 50В, а на каждой секции светодиодов 27В), соответственно для одного светодиода 27В, 37мА, 0,99W. Для понижения тока нужно увеличить 2 резистора R1 и R2 с 10 Ом до 15 Ом (между 1 ногой и 2-4 ногами JZ1009AE) —  путём замены или добавить резисторы 5,1 Ома последовательно. Мощность снизится на 33%, до 12W. Рабочее напряжение на 1 секции светодиодов снизится до 26,5 Вольт, ток до 74мА, соответственно для одного светодиода 26,5В, 24,6мА, 0,66W. Для справки, лампа потребляла от ~220V 81мА 18W до переделки и 54мА 12W после. В этих лампах нет конденсатора, поэтому они мерцают.

В лампах Космос basic A65 E27 25Вт 4500K 220В/50Гц 0,100A модель LED25wA65E2745 световой поток 2100 лм срок службы 25000 ч на основе стабилизатора тока —  микросхемы HA5836AE (8 ног) (плата N018082 V1.1) применяются 22 светодиода (11 последовательных секций по 2 светодиода в параллель) на 99В 176мА, 17W, плата A65Y 2P11S N018080A (и N018082). Для понижения тока нужно увеличить резистор 1R07 ом, до 1R30 (между 7,8 ногой и 1 ногой HA5836AE) — с 1,07 ома до 1.3 ома путём замены на 1R3 или на 1R0 и 0R3 ома. Мощность снизится на 19%, до 14W. Рабочее напряжение на секциях светодиодов снизится до 98 Вольт, ток до 146мА, соответственно для одного светодиода 8,9В, 146мА, 1,3W. Для справки, лампа потребляла от ~220V 105мА 23W до переделки и 70мА 15W после.

Нужно понимать, что если «всеволишь» в одной из секций из трёх параллельных светодиодов вышел из строя «всеволишь» один светодиод, то через два оставшихся потекёт ток как через три и нужно понизить ток в 1,5 раза (чтобы было как раньше), а чтобы понизить — нужно в 2,2 раза, или же сначала сгорит более слабый один из двух, а сразу за ним и третий, потому что через него потечёт весь ток. Производители ламп делают гарантированно умирающие максимально неремонтнопригодные схемы..

В светильнике VARTON EB40-095-0-280-2180 213L — там 4 полоски VARTON EB 18-222-1-12 9W DC27V DW — формат 9 пар = 18 светодиодов = 4×18=72 светодиода, плата JBT-IW0401-006 REV 2.1 20130715, чип IW3623-00, конденсаторы 33uFx450V и 50v220uF x 2шт, трансформаторы JBT-IW0401-29V, JBT-IW0401-EE16, дроссель UU9.8-40mH, транзисторы D13007, X13001, 7N65A, спаренный диод SFF1004. На светодиодные ленты шло 28.7В 1.14А, 32.7 Ватта. Соответственно на один светодиод 3.2В, 142мА, 0.45Вт. Для понижения тока нужно снять R36 — 3.6 Ома (стоит в параллель 4 штуки R25 R34 R26 R36 — 3R30, 3R60, 3R30, 3R60) — ток упадёт до 0.86А, вольтаж до 27.7В, мощность до 23,8 Вт, а яркость упадёт на 27%. Если же к R25 допаять последовательно 2R2 — 2 шт, то ток упадёт до 0.98А , вольтаж до 28.1В, мощность до 27,5Вт, а яркость на 16%. При ремонте светильника был найден высохший C16 47uFx25V, симптомы поломки через 7 лет работы — постепенно увеличивающаяся задержка перед свечением, потом совсем перестал включаться.

В уличном фонаре СТАРТ LED FL20W42 20 Вт IP65 плата YDZ220 14LED корпус YTZ-3.1-00017 SL-A-2-1 применяются две микросхемы RM9001E с резисторами RS1 и RS4 по 22 Ома — увеличиваем каждый до 33 или даже до 44 Ом — мощность упадёт до 15 или даже до 10 Вт — фонарь будет работать долго. В фонаре на этой микросхеме нет конденсатора, поэтому он мерцает.

Охлаждение:

Также, в лампах с массивным алюминиевым радиатором между ним и кругляшом светодиодов часто отсутствует белая теплопроводящая паста КПТ-8, желательно её нанести.

Если не опасно и есть возможность разобрать лампу — то желательно снять пластиковый или стеклянный стакан — стекло греть путем включения лампы )) — то это даст дополнительное охлаждение, а с исчезновением пластика немного повысит световой поток, но даст синеватый оттенок и точечные источники света будут слепить глаза при попадании лампы в зрительную область.

Если есть возможность намного более качественно улучшить охлаждение лампы путём установки горизонтально, в всегда холодном месте или путём разбора на составляющие и при разносе греющихся компонентов или установке их на массивные радиаторы, то можно снижать потребление лампы не на 30%, а на 10-15%. На заводе срок действия лампы точно посчитан на уровне 1 года — дешевые, 2 года — средние, 3 года — дорогие, поэтому важно сделать чтобы не ярко светило, а долго. Для яркости просто ставьте больше ламп.. Если не снижать рабочий ток, то через время деградируют и светодиоды, и конденсаторы..

Ремонт:

Всё то же самое нужно делать и в процессе ремонта вышедших из строя ламп, в которых чаще всего горят светодиоды, а реже вздуваются конденсаторы. В лампах с последовательной схемой включения светодиодов сгоревшие закорачиваем (если последовательных две группы — то в каждой должно остаться одинаковое количество светодиодов), в параллельных все утухшие светодиоды меняем на целые (увы, или не будет работать группа, но можно с умом и коротить в каждой группе поровну), и обязательно снижаем ток (потому что все светодиоды немного деградировали или в схемах без регулятора тока возрос ток после закорачивания светодиодов).

Файл для расчетов [download url=»http://agansk.ru/tech/wp-content/uploads/2018/01/1R2.xls»]

Оставляйте комментарии по файлу, кому что нужно рассчитать..

Тэги: LED driver, 9918C, BP3102, iW3623, energo efficiency, LED lamp, Понижение яркости, Как уменьшить яркость, Уменьшаем светимость — увеличиваем срок службы. Срок жизни.

Каков срок службы светодиодных ламп и светильников?

⚠ Мы здесь, чтобы служить вам во время пандемии COVID-19. Нажмите здесь, чтобы узнать как >>
  • Магазин товаров
    • Лампочки
    • Балласты и батареи
    • Аккумуляторы
    • Электрооборудование
    • Светильники
    • Специальность
    • Регистрация бизнес-аккаунта
  • Услуги
    • Проблемы, которые мы решаем
    • Консультации по дизайну
    • Строительные услуги
    • Продукты на замену
    • Техническое обслуживание освещения
    • Управление модернизацией
.

Как работают светоизлучающие диоды

Диод - это простейший полупроводниковый прибор. Вообще говоря, полупроводник - это материал с различной способностью проводить электрический ток. Большинство полупроводников сделано из плохого проводника, в который были добавлены примеси (атомы другого материала). Процесс добавления примесей называется легирование .

В случае светодиодов материалом проводника обычно является арсенид алюминия-галлия (AlGaAs).В чистом арсениде алюминия-галлия все атомы идеально связываются со своими соседями, не оставляя свободных электронов (отрицательно заряженных частиц) для проведения электрического тока. В легированном материале дополнительные атомы изменяют баланс, либо добавляя свободные электроны, либо создавая дыры, по которым электроны могут уходить. Любое из этих изменений делает материал более проводящим.

Объявление

Полупроводник с дополнительными электронами называется материалом N-типа , так как в нем есть дополнительные отрицательно заряженные частицы.В материале N-типа свободные электроны перемещаются из отрицательно заряженной области в положительно заряженную.

Полупроводник с дополнительными дырками называется материалом P-типа , так как он фактически содержит дополнительные положительно заряженные частицы. Электроны могут прыгать от отверстия к отверстию, перемещаясь из отрицательно заряженной области в положительно заряженную. В результате кажется, что сами отверстия перемещаются из положительно заряженной области в отрицательно заряженную.

Диод состоит из секции материала N-типа, прикрепленной к секции материала P-типа, с электродами на каждом конце. Это устройство проводит электричество только в одном направлении. Когда на диод не подается напряжение, электроны из материала N-типа заполняют дырки из материала P-типа вдоль стыка между слоями, образуя зону обеднения. В зоне истощения полупроводниковый материал возвращается в исходное изолирующее состояние - все дырки заполнены, поэтому нет свободных электронов или пустых пространств для электронов, и электричество не может течь.

Чтобы избавиться от зоны истощения, вы должны заставить электроны двигаться из области N-типа в область P-типа, а дырки - в обратном направлении. Для этого вы подключаете сторону N-типа диода к отрицательному концу цепи, а сторону P-типа - к положительному концу. Свободные электроны в материале N-типа отталкиваются отрицательным электродом и притягиваются к положительному электроду. Отверстия в материале P-типа перемещаются в другую сторону. Когда разность напряжений между электродами достаточно высока, электроны в зоне истощения выталкиваются из своих отверстий и снова начинают свободно перемещаться.Зона истощения исчезает, и заряд перемещается по диоду.

Если вы попытаетесь пропустить ток другим путем, когда сторона P-типа подключена к отрицательному концу цепи, а сторона N-типа подключена к положительному концу, ток не будет течь. Отрицательные электроны в материале N-типа притягиваются к положительному электроду. Положительные отверстия в материале P-типа притягиваются к отрицательному электроду. Ток не течет через переход, потому что дырки и электроны движутся в неправильном направлении.Зона истощения увеличивается. (См. «Как работают полупроводники» для получения дополнительной информации обо всем процессе.)

Взаимодействие между электронами и дырками в этой установке имеет интересный побочный эффект - он генерирует свет!

.

Как продлить срок службы уличного солнечного света DIY? - Рынок технологий

Как продлить срок службы уличного солнечного света своими руками? https://www.solarledfactory.com/news/diy-solar-street-light.html
Уличный солнечный уличный фонарь, сделанный своими руками, обладает характеристиками безопасности, энергосбережения и защиты от загрязнений и активно продвигается во всех частях Китая. Являясь ярким представителем зеленого экологического освещения, его широкое использование всегда приносит пользу нашей стране и людям, но используется любой продукт.Для жизни солнечный уличный фонарь своими руками не исключение. Как продлить срок службы уличного солнечного света своими руками - это наша самая важная проблема на данный момент.
Во-первых, выберите правильный самодельный контроллер солнечного уличного освещения. Контроллер описывается как мозг в самодельном солнечном уличном фонаре, но это важный компонент. Это связано со сроком службы и стоимостью всей системы уличных фонарей на солнечных батареях, поэтому при его выборе необходимо обращать внимание на качество контроллера.

Во-вторых, выберите правильную батарею для уличных фонарей на солнечных батареях.Качество батареи напрямую влияет на срок службы уличного фонаря. Хотя аккумулятор того же качества, как правило, немного дороже, срок его службы будет больше. В настоящее время литиевые батареи широко используются и продвигаются как аккумуляторные батареи для уличных фонарей нового типа из-за их большой глубины разряда, небольшого размера и большей защиты окружающей среды и экономии энергии.

Три светодиодных источника рассеивания тепла. В большинстве уличных фонарей на солнечных батареях используются светодиодные источники света, поскольку они могут снизить потребление энергии.Самое главное, срок службы светодиодных источников света очень велик, но на срок его службы влияют не только собственные условия, но и внешние факторы. Если вы хотите продлить срок службы светодиодного источника света, следует обратить внимание на его тепловыделение и постоянный ток. Хорошая функция отвода тепла является основой для контроля внутренней температуры лампы. Поддержание постоянной внутренней температуры лампы может сократить срок службы светодиодных ламп.

Четыре, противоугонные рабочие.Стоимость батарей и батарейных панелей для уличных фонарей на солнечных батареях очень высока, а их использование очень обширно, поэтому они, естественно, стали политикой многих преступников. Чтобы обеспечить нормальное использование уличных фонарей на солнечных батареях, мы должны обратить внимание на защиту от краж. Батарея закапывается под основание фонарей в одном солнечном уличном фонаре, а затем в профиль заливается цемент, чтобы солнечная батарея не попала в профиль. Эта практика не влияет на нормальное использование освещения и может эффективно предотвратить кражу.В настоящее время литиевые батареи широко используются и продвигаются как новый тип аккумуляторов для солнечных батарей уличных фонарей из-за их глубокой разрядки, небольшого размера и большей защиты окружающей среды и энергосбережения. Как правило, они размещаются на задней панели батарейного отсека на одной солнечной батарее уличных фонарей и не подходят для кражи и повреждения.

.

Как купить светодиодные лампы

Есть светодиодные лампы, доступные почти для любой задачи освещения в вашем доме, но есть несколько вещей, которые следует учитывать.

Длительный срок службы светодиодов делает их идеальным выбором для установки в труднодоступных местах, которые нужно менять как можно реже, например, над лестницей или на высоких потолках.

Наш тест переключения показал, что светодиоды могут выдерживать многократное включение и выключение в течение более 12 000 циклов. Это означает, что светодиоды особенно подходят для гардеробных, туалетов, ванных комнат и кухонь - мест, где часто включается и выключается свет.

Если вы хотите использовать диммер, вам необходимо купить светодиодные лампы с регулируемой яркостью и убедиться, что ваш переключатель диммера совместим с регулируемой светодиодной лампой (это будет указано на упаковке).

Запасная лампа или специальный светодиодный светильник

В специальном светильнике находится светодиод и связанная с ним электроника - лампа прикреплена к светильнику и не может быть заменена, как обычная лампочка.

Запасная лампа - это светодиод, который можно установить в существующий светильник для замены лампы накаливания, галогенной лампы или КЛЛ.

Специальный фитинг предназначен для управления теплом, которое концентрируется в его основании; перегрев может сократить срок службы светодиода. Если вы устанавливаете свет в рамках ремонта или строите новый дом, мы рекомендуем специальные светодиодные светильники. Учтите, что если фитинг выйдет из строя, вам придется заменить весь блок.

Если в вашем доме есть встраиваемые потолочные светильники с лампами накаливания или галогенными лампами, лучше заменить весь светильник на специальный светодиодный светильник, а не просто заменять лампу.Простая замена лампы на светодиод может привести к его перегреву и сокращению срока службы. Кроме того, большинство старых светильников типа «даунлайт» требуют больших зазоров до теплоизоляции потолка и могут пропускать сквозняки через отверстие в потолочной облицовке. Современные специализированные светодиодные светильники типа downlight сочетают энергоэффективное освещение с лучшей воздухонепроницаемостью, а изоляция может быть прикреплена к ним или даже перекрыта. Чтобы установить их, вам понадобится электрик.

Для светильников без утопления модернизировать светодиодные лампы дешевле и проще, чем устанавливать специальные светодиодные светильники, но не забудьте убедиться, что вы получаете такой же базовый тип и аналогичную форму, яркость, цветовую температуру и угол луча.

Теплый белый или холодный белый

Первая жалоба на светодиоды заключалась в том, что они непригодны для общего окружающего освещения из-за резкого белого света, который они производят. Сейчас широко распространены модели, способные производить более теплый белый свет. Если вам нужна лампочка для гостиной или прихожей, теплый вариант - хороший выбор, чтобы избежать ощущения холода, но холодное освещение подойдет для ванной или прачечной.

Цветовая температура
Цветовая температура относится к цветовым характеристикам света.Он варьируется от теплого, как желтый свет лампы накаливания, до холодного, как голубоватый свет некоторых люминесцентных ламп. Он измеряется в Кельвинах (K). Чем выше K, тем холоднее свет.

Теплый белый (2700K - 3000K) подчеркивает теплые цвета в вашем доме и отлично подходит для жилых помещений.

Холодный белый (4000K) - это голубовато-белый свет, улучшающий контраст между цветами. Подходит для рабочих мест, где важен контраст.

Угол свечения

Угол луча определяет, как свет распространяется от лампочки.Углы луча светодиодов сильно различаются и зависят от их применения. Форма светодиодной лампы определяет направление излучения света. Однако при покупке даунлайта убедитесь, что вы получаете лампочку, которая излучает свет только своим концом.

Лампы с узким углом наклона - менее 30 градусов - обычно используются при размещении нескольких даунлайтов рядом друг с другом, например, в коридоре или при освещении шкафов. Большие углы луча используются с мощными светодиодами для прожекторного освещения. Если вы заменяете лампы накаливания или галогенные лампы на светодиоды, убедитесь, что угол луча такой же, как у старой лампы.

Очень большие углы луча иногда встречаются в кладовых или гардеробных. По мере увеличения угла луча вам требуется больше люмен (светоотдача) для поддержания интенсивности света.

.

Смотрите также