Как увеличить яркость люминесцентной лампы


Регуляторы яркости компактных люминесцентных ламп, и не только… — Меандр — занимательная электроника

Автор предлагает несколько вариантов регуляторов яркости для компактных люминесцентных ламп, регулирующий элемент в которых — мощный полевой транзистор.

Компактная люминесцентная лампа (КЛЛ) — газоразрядный источник света, в котором электрический раз­ряд в стеклянной трубке (колбе) в па­рах ртути или её соединений создаёт ультрафиолетовое излучение, преобра­зуемое в видимый свет с помощью нанесённого на внутренние стенки трубки люминофора. Компактной её называют потому, что, в отличие от линейных люминесцентных ламп, трубка сделана П-образной или свёрнута в спираль.

Рис. 1

Схема одного из вариантов КЛЛ по­казана на рис. 1 (нумерация элементов приведена в соответствии с обозна­чениями на печатной плате). Она со­держит газоразрядный источник света ЕL1 и электронный пуско-регулирую­щий аппарат (ЭПРА). В его состав вхо­дят выпрямитель на диодах D1—D4 со сглаживающим конденсатором С1, высокочастотный генератор на транзи­сторах Q1, Q2 и цепь запуска и огра­ничения тока: ЯС-генератор на динисторе DB3, дроссель L3, конденсатор С6, терморезистор РТС. Дроссель L3 служит токоограничивающим элемен­том. Генератор питается постоянным напряжением около 300 В, поскольку до него заряжается сглаживающий конденсатор С1. Формы (условно) на­пряжения на выходе выпрямителя КЛЛ и потребляемого ею от сети тока пока­заны на рис. 2.

Рис. 2

Большинство регуляторов мощности (яркости) — фазоимпульсные. Ключе­вым элементом в них является тринистор (симистор), на управляющий вход которого в определённый момент по­ступает открывающий импульс. Дли­тельность этого импульса из соображе­ний экономичности, как правило, неве­лика. Чтобы тринистор оставался в открытом состоянии, через него дол­жен протекать определённый ток, назы­ваемый током удержания. В случае с лампой накаливания, паяльником или другим нагревательным прибором ток через них протекает всё время, пока тринистор включен. Когда ток становится малым при приближении сетевого напряжения к нулю, тринистор закрыва­ется. Для его открывания в следующий полулериод сетевого напряжения по­требуется очередной импульс от узла управления. Изменяя время появления импульса относительно начала каждого полупериода сетевого напряжения, можно изменять среднее напряжение на нагрузке. В результате регулируется яркость лампы накаливания (или тем­пература паяльника).

Если нагрузка такого регулятор« — КЛЛ, ситуация изменяется. Дело в том, что КЛЛ потребляет ток, когда напряжение сети превышает напряжение на сглаживающем конденсаторе ЭПРА. Если в регуляторе открывающий им­пульс поступит на тринистор в момент, когда это условие не выполняется, он не откроется, поскольку нет условий для протекания тока. Именно поэтому фазоимпульсные регуляторы яркости работают с КЛЛ неустойчиво или не работают вообще.

Хотя КЛЛ существенно экономичнее лампы накаливания, но всё же иногда требуется уменьшить яркость её свече­ния. Как отмечено выше, широко рас­пространённые тринисторные регулято­ры яркости, как автономные, так и встро­енные в светильники, не рекомендуется применять совместно с КЛЛ. Поэтому для последних потребуется специализи­рованный регулятор, кроме того, суще­ствуют КЛЛ, работающие с подобным регулятором. Но возникают сомнения, а можно ли регулировать яркость обычной КЛЛ? На этот вопрос ответ утвердитель­ный. Только регулировать яркость можно изменением тока через газоразрядную трубку или длительностью импульсов тока. После возникновения разряда КЛЛ начинает светить, её яркость зависит от тока, протекающего через лампу, при этом напряжение на ней изменяется в относительно небольших пределах. По­скольку часть напряжения падает на эле­ментах ЭПРА, изменяя напряжение питания КЛЛ, можно изменять ток через газоразрядную трубку, т. е. яркость ее свечения. Существует противоречивая информация о том, как влияет на срок службы КЛЛ уменьшение напряжения питания.

В статье В. В Черепанова, А. В. Коротаева (Энергосовет, 2011, №3(16), С. 65—68) «Исследование характеристик компактных люминесцентных ламп» приведено иссле­дование зависимости освещённости рабочего места от напряжения питания для КЛП различной мощнос­ти и разных производителей. Эти зависимости показаны на рис. 3. Из них следует, что интервал регулировки яркости у КЛЛ гораздо мень­ше, чем у лампы накалива­ния, поскольку снизу он ограничен напряжением, при котором КЛЛ уже не работа­ет. Но всё же регулировка вполне возможна, хотя и в меньших пределах, чем у ламп накаливания. При этом интервал регулировки боль­ше у более мощных КЛЛ.

Рис. 3

Поскольку для КЛЛ тиристорные ре­гуляторы не совсем подходят, предла­гается сделать регулятор с коммути­рующим элементом на полевом транзи­сторе, который закрывается, когда се­тевое напряжение превысит некоторое пороговое значение. Принцип работы такого регулятора поясняет рис. 4. В начале каждого полупериода сетевое напряжение поступает на нагрузку. Когда напряжение превысит Uпор, тран­зистор закроется и нагрузка окажется обесточена. Он откроется вновь, когда сетевое напряжение станет меньше Uпор. В данном случае при уменьшении напряжения на нагрузке максимум по­требляемого тока не совпадает с мак­симумом напряжения. При изменении сетевого напряжения от U1, до U2 изме­нится только время выключения и вклю­чения полевого транзистора, а макси­мальное напряжение на нагрузке оста­нется неизменным Для нагрузки, в состав которой входит выпрямитель со сглаживающим фильтром (как КЛЛ), это означает, что питающее напряжение окажется стабилизированным, а это может быть важным фактором.

Рис. 4

Схема одного из вариантов такого регулятора показана на рис. 5. Чтобы его упростить, сетевое напряжение предварительно выпрямляется. Для КЛЛ, ламп накаливания или нагрева­тельных приборов это не имеет принципиального значения. Сетевое напряжение выпрямляет диодный мост VD1—VD4, На элементах R1, С2 и VD5 собран параметрический ста­билизатор напряжения для питания ОУ DA1, на котором собран компара­тор напряжения. Положительную об­ратную связь обеспечивает резистор R8, а гистерезис задаёт резистор R5. На неинвертирующий вход ОУ посту­пает постоянное напряжение с ре­зистивного делителя R2R3. Конден­сатор С3 дополнительно сглаживает пульсации. На инвертирующий вход ОУ поступает пульсирующее напря­жение с выхода резистивного дели­теля R4R6R7, подключённого к выпрямителю. Переменным ре­зистором R6 устанавливают пороговое напряжение. Диод VD6 защищает этот вход от недопустимо большого на­пряжения, превышающего на­пряженно питания ОУ. Элект­ронный ключ собран на поле­вом транзисторе VT1. Стаби­литрон VD7 защищает его зат­вор от бросков напряжения. На элементах С1 и L1 собран по­мехоподавляющий LC-фильтр. Диод VD8 устраняет влияние КЛЛ на регулятор, если в ней перед выпрямителем установлен помехопо­давляющий LC-фильтр.

Рис. 5

Когда напряжение сети меньше по­рогового, на инвертирующем входе ОУ DА1 напряжение меньше, чем на неин­вертирующем, поэтому на выходе ОУ напряжение близко к его напряжению питания. Полевой транзистор открыт, напряжение поступает на нагрузку Если к регулятору подключена КЛЛ, сглажи­вающий конденсатор на выходе её выпрямителя (С1 на рис. 1) заряжается до напряжения Uпор. Работу регулятора для этого случая поясняет рис. 6. Если пороговое напряжение Uп1 будет больше амплитуды сетевого напряжения, полевой транзистор ока­жется всё время открытым и КЛЛ работает с максимальной яркостью. Формы напряжения на сглаживающем конденсаторе ЭПРА КЛЛ и по­требляемого ею тока для этого случая показаны красным цветом. Если уста­новить пороговое напряжение Uпор меньше сетевого, регулятор начинает работать. Поэтому сглаживающий конденсатор в ЭПРА КЛЛ будет заря­жаться только до этого напряжения, а значит, яркость её свечения умень­шится. Формы напряжения и тока для этого случая показаны синим цветом. Переменным резистором R6 можно изменять напряжение питания КЛЛ и ее яркость свечения.

Рис. 6

Следует ещё раз отметить, что в этом случае, даже если напряжение сети изменится, на КЛЛ будет посту­пать пульсирующее напряжение с тем же максимальным значением, т. е. регу­лятор обеспечит стабилизацию напря­жения на нагрузке и яркость свечения лампы.

Если сравнить формы напряжения и тока для разных пороговых напряже­ний, видно, что когда регулятор начнёт уменьшать напряжение на нагрузке, частота импульсов тока становится в два раза больше, а их длительность уменьшается, поскольку в течение од­ного полупериода ток через КЛЛ проте­кает дважды. Поэтому частота пульса­ций на выходе выпрямителя ЭПРА КЛЛ увеличится, а их амплитуда уменьшит­ся. Это приведёт к тому, что пульсации яркости КЛЛ уменьшатся и станут ме­нее заметными.

Здесь следует немного пояснить, о чём идёт речь. Поскольку автогенератор в ЭПРА КЛЛ работает на частоте не­сколько десятков килогерц, многие по­требители думают, а производители утверждают, что у КЛЛ пульсации яркос­ти практически отсутствуют. Но ведь на выходе выпрямителя КЛЛ есть пульса­ции выпрямленного напряжения, амп­литуда которых зависит от ёмкости сглаживающего конденсатора (С1 на рис. 1) и напрямую влияет на пульсацию яркости. Не совсем добросовестные производители «экономят» на ёмкости этих конденсаторов, именно поэтому пуль­сации яркости свече­ния КЛЛ могут быть сравнимы и даже превосходить пуль­сации яркости лампы накаливания.

Поскольку дли­тельность импульсов тока уменьшается, увеличиваются соз­даваемые помехи. Именно для их по­давления предна­значен фильтр C1L1. Конечно, такой регу­лятор подойдет и для регулировки яркости ламп наливания или нагревательных при­боров.

Большинство эле­ментов собранного макета размещены на односторонней пе­чатной плате из стек­лотекстолита толщи­ной 1,5…2 мм, её чертёж показан на рис. 7. Применены постоянные резисто­ры С2-23, МЛТ. Р1-4 и импортные, перемен­ный — СП4-1, оксид­ные конденсаторы — импортные, осталь­ные — пленочные, дроссель — серии RLB0608 или анало­гичный индуктивно­стью 47…220 мкГн, рассчитанный на ток, потребляемый на­грузкой. Светодиод — маломощный любого цвета свечения с диаметром корпуса 3…5 мм. Стабилитро­ны можно применить любые маломощные на напряжение ста­билизации 12…14 В. Замена транзистора IRFBC40 — IRF840. Разъём Х1 — клеммник винтовой с шагом выводов 7,5 мм, рассчитанный для ус­тановки в отверстия печатной платы.

Рис. 7

Внешний вид смонтированной пла­ты показан на рис. 8 (вместо свето­диода установлена перемычка). Её по­мещают в пластмассовый корпус, руч­ка переменного резистора должна быть из изоляционного материала. Налаживание сводится к подборке ре­зисторов R4 и R7 для получения тре­буемого интервала регулировки выход­ного напряжения.

Рис. 8

Схему регулятора можно упростить, если в качестве порогового элемента применить логический элемент на ос­нове триггера Шмитта, например, мик­росхему К561ТЛ1. Такой элемент обес­печит быстрое включение—выключе­ние ключевого элемента, но имеет гис­терезис Схема такого регулятора по­казана на рис. 9. Помехоподавляющий фильтр собран на элементах С1, С2 и L1. напряжение питания микросхемы стабилизирует параметрический ста­билизатор напряжения на стабилитро­не VD5 и гасящем резисторе R6, Све­тодиод HL1 индицирует наличие сете­вого напряжения. Защитного диода на входе (вывод 2) элемента DD1.1 нет, поскольку цепи защиты встроены в микросхему, а входной ток ограничен резисторами R2 и R3 Резистор ог­раничивает бросок тока при включении регулятора. Выходное напряжение ре­гулируют переменным резистором R4.

Рис. 9

Работает этот регулятор аналогично, но имеет одну особенность. Дело в том, что из-за большого гистерезиса тригге­ра Шмитта включение и выключение транзистора VТ1 происходит при раз­личных значениях сетевого напряжения. Это означает, что в первой половине каждого полупериода сетевого напря­жения амплитуда поступающего на нагрузку напряжения будет больше, чем во второй. Это не имеет значения для нагревательных приборов, но не для КЛЛ. Если сглаживающий конденсатор в ЭПРА КЛЛ не успеет разрядиться, импульса тока во второй половине полу­волны сетевого напряжения может и не быть. В этом случае амплитуда тока в первой половине возрастёт, поскольку сглаживающий конденсатор в КЛЛ успе­ет разрядиться сильнее. На работу КЛЛ это не повлияет, но уменьшит помехи, создаваемые регулятором.

Рис. 10

Плата упрощённого варианта, чертёж которой показан на рис. 10, рассчитана для установки в корпус от трансформа­торного блока питания (адаптера) раз­мерами 50x55x80 мм (без выступающих элементов) с сетевой вилкой. Плата ус­тановлена на крышке корпуса, а ось пе­ременного резистора выходит с другой стороны. Применены в основном ана­логичные детали, для повышения безо­пасности применен переменный резис­тор серии PC-16S с пластмассовыми корпусом и осью Транзистор IRF840 можно заменить транзистором IRF710, IRFBC40. Выключатель питания — движ­ковый KBB70-2P2W, но можно приме­нить переменный резистор, совмещен­ный с выключателем, рассчитанным для работы при напряжении сети. Налажи­вание сводится к установке интервала регулировки выходного напряжения подборкой резисторов R2, R3. R5.

На свободной стороне корпуса ус­тановлены гнёзда XS1. Выключатель смонтирован на корпусе регулятора, резистор установлен между вилкой и платой. Внешний вид смонтирован­ной платы показан на рис. 11.

Рис. 11

Ещё больше упростить регулятор можно, если исключить стабилизатор напряжения питания порогового элемен­та. Схема такого варианта регулятора показана на рис. 12. На элементах С1. L1. L2 и С2 собран помехоподавляющий фильтр, на диодах VD1 —VD4 — мостовой выпрямитель. На диоде VD5, резисторах R2, R3 и конденсаторе С3 собран источ­ник питания затворной цепи полевого транзистора VT1. Диод VD5 исключает разрядку конденсатора С3 через цепи регулятора и КЛЛ, стабилитрон VD6 ограничивает напряже­ние на затворе поле­вого транзистора. Диод VD7 устраняет влияние КЛЛ на ра­боту регулятора, ес­ли у неё на входе (до выпрямителя) уста­новлен помехоподав­ляющий LC-фильтр.

Рис. 12

В качестве порого­вого устройства при­менена микросхема параллельного стаби­лизатора напряжения серии TL431 (DA1). Её особенность состоит в том, что при напря­жении на управляю­щем входе (вывод 1) менее 2,5 В ток через неё не превышает 0.3-0.4 мА, Когда напряжение превысит указанное значение, ток через микросхе­му резко возрастёт.

В начале каждого полупериода сете­вого напряжения на управляющем входе микросхемы DA1 напряжение — ме­нее 2,5 В, ток через микросхему DA1 мал, поэтому напряжение с конденсато­ра С3 поступает на затвор открытого транзистора VT1. В этом случае сетевое напряжение поступает на КЛЛ. Если на­пряжение на движке резистора не пре­высит 2,5 В (что соответствует, напри­мер, напряжению Uп1 на рис 6), полевой транзистор будет всегда открыт (напря­жение затвор—исток — 13 В) и на нагрузку поступает всё сетевое напряже­ние. Когда напряжение на движке резис­тора R7 превысит 2,5 В (например, если установлено Uп2), ток через микросхему возрастёт, а напряжение на затворе транзистора уменьшится до 2 В. В ре­зультате полевой транзистор закроется и на нагрузку поступит напряжение Uп2 в течение только части сетевого полупериода Поскольку напряжение на затворе полевого транзистора ограничено стабилитроном VD6, а ток через резис­тор R4 ограничен резисторами R2 и R3, напряжение на конденсаторе С3 не пре­высит 25…30 В.

Рис. 13

По сравнению с предыдущей кон­струкцией весь регулятор удалось раз­местить в корпусе меньшего размера (40x42x57 мм). Поэтому элементы раз­мещены на двух платах Чертёж основ­ной показан на рис. 13, а дополнитель­ной, на которой установлен фильтр, — на рис. 14.

Рис. 14

Платы приклеены внутри корпуса (рис. 15), на его стенках уста­новлены выключатель SA1, переменный резистор R7 и гнездо ХS1. Резистор R1 установлен на выводах выключателя и вилки ХS1 и на рис. 15 не виден. Все со­единения проведены проводом МГТФ.

Рис. 15

В устройстве применены в основном такие же элементы, что и в предыдущей конструкции. Поскольку регулятор пла­нировалось использовать совместно с КЛЛ, были применены менее мощные дроссели (от ЭПРА КЛЛ). Внешний вид регулятора показан на рис. 16.

Рис. 16

Предлагаемый регулятор можно применить для регулировки напряже­ния ламп накаливания и нагреватель­ных приборов, например паяльников. Их мощность ограничена параметрами применённых выпрямительных дио­дов, дросселей и допустимого тока транзистора. Для предложенных регу­ляторов мощность нагрузки не должна превышать 100…150 Вт. Для увеличе­ния мощности потребуется применить более сильноточные диоды, более мощный дроссель, а транзистор необ­ходимо установить на теплоотвод.

По сравнению с тринисторными регуляторами яркости, где частота им­пульсов тока через нагрузку — 100 Гц. В предлагаемых она может быть вдвое больше. Поэтому и пульсации яркости меньше. Кроме того, если с помощью регулятора напряжение на нагрузке уменьшено, максимум тока не совпада­ет с максимумом напряжения. В этом случае «верхушка синусиоды» не будет «срезана» и её форма в сети должна улучшиться.

Такой регулятор можно применить и с любой маломощной активной нагруз­кой. Нижний предел регулируемой мощности на ней зависит от тока утечки закрытого полевого транзистора.

Автор: И. НЕЧАЕВ, г. Москва
Источник: Радио №4/2017

Как установить люминесцентный свет: советы и рекомендации

Вы можете подумать о замене некоторых старых ламп накаливания на люминесцентные лампы. Флуоресцентный свет обеспечивает равномерное освещение без теней, но, что лучше всего, люминесцентные лампы более эффективны, чем лампы накаливания. В лампе накаливания большая часть электроэнергии выделяется в виде тепла, а не света. Люминесцентная лампа, напротив, остается прохладной.

Как работает люминесцентная лампа? В флуоресцентной цепи, начиная с левого штыря вилки, ток проходит через балласт, через одну из нитей лампы, через замкнутый переключатель в стартере, через другую нить накала в лампе и выходит из правого. вилка вилки.Ток нагревает два маленьких элемента на концах люминесцентной лампы; затем стартер открывается и через лампу течет ток.

Объявление

Балласт - это магнитная катушка, регулирующая ток через трубку. Он вызывает выброс дуги через трубку при размыкании пускателя, а затем поддерживает ток, протекающий с правильной скоростью, когда лампа накаляется. В большинстве люминесцентных светильников стартер представляет собой автоматический выключатель.Как только он обнаруживает, что лампа горит, он остается открытым. Стартер закрывается каждый раз, когда вы обесточиваете прибор.

Многие люминесцентные светильники имеют более одной лампы для обеспечения большего количества света. Эти лампы должны иметь индивидуальные стартеры и балласты для каждой лампы. Может показаться, что приспособление имеет две трубки, работающие от одного балласта, но на самом деле в одном корпусе встроено два балласта. Светильники с четырьмя трубками также имеют четыре стартера и четыре балласта. В некоторых светильниках пускатели встроены и не могут быть заменены по отдельности.Поскольку в люминесцентной лампе всего три основные части, любой ремонт обычно можно выполнить самостоятельно. Все люминесцентные лампы с возрастом тускнеют, и они могут даже начать мерцать или мигать. Это предупреждающие сигналы, и вы должны произвести необходимый ремонт, как только заметите какие-либо изменения в нормальной работе лампы. Тусклая трубка обычно требует замены, и если ее не заменить, это может вызвать напряжение в других частях светильника. Точно так же повторяющееся мигание или мигание приведет к износу стартера, что приведет к ухудшению изоляции на стартере.

Люминесцентные светильники достаточно просто обслужить методом замены. Если вы подозреваете, что какая-то деталь неисправна, замените ее на новую. Начните с люминесцентной лампы или лампы. Вы можете установить новую или, если вы не уверены, что лампа перегорела, проверить старую лампу в другом люминесцентном светильнике. Снимите старую трубку, вывернув ее из гнезд в приспособлении. Установите новую трубку таким же образом - вставьте зубцы трубки в гнездо и поверните трубку, чтобы зафиксировать ее на месте.

Если проблема не в трубке, попробуйте поменять стартер. Пускатели люминесцентных ламп оцениваются по мощности, и важно, чтобы вы использовали правильный стартер для лампы в вашем светильнике. Снимите старый стартер так же, как вы снимали старую трубку, вывернув его из гнезда в приспособлении. Установите новый, вставив его в розетку и повернув, чтобы зафиксировать на месте.

Балласт также рассчитан на мощность, и заменяемый балласт, как и заменяемый стартер, должен соответствовать мощности лампы и типу приспособления.Балласт - это наименее вероятная деталь, которая выйдет из строя, и ее сложнее заменить, поэтому оставьте балласт напоследок, когда начнете заменять детали. Если ни трубка, ни стартер не неисправны, проблема должна быть в балласте. Чтобы заменить неисправный балласт, обесточьте цепь, разберите приспособление, перенесите провода от старого балласта к новому - по одному, чтобы избежать неправильного подключения - и, наконец, снова соберите

.

приспособление.

Если трубка, стартер и балласт исправны, но лампа по-прежнему не горит, проверьте выключатель на предмет неисправности.Если лампой управляет настенный выключатель, замените выключатель, как описано в следующем разделе. Если в лампе есть кнопочный выключатель, старый выключатель можно заменить новым такого же типа. Чтобы обесточить цепь перед работой с переключателем, удалите предохранитель цепи или отключите автоматический выключатель.

В большинстве случаев переключатель вкручивается в крепежную гайку с резьбой на внутренней стороне лампы. Два провода от переключателя подключаются, обычно с помощью гаек, к четырем проводам от люминесцентной лампы.Разберите приспособление настолько, насколько это необходимо, чтобы получить доступ к задней части переключателя, затем вкрутите новый переключатель и перенесите провода от старого переключателя к новому, по одному, чтобы избежать неправильного подключения. Соберите приспособление и снова включите цепь.

На следующей странице мы обсудим шаги, которые необходимо предпринять для установки нового люминесцентного светильника.

.

Свет прямо сейчас - как работают люминесцентные лампы

Сегодня самой популярной люминесцентной лампой является лампа с быстрым запуском . Эта конструкция работает по тому же основному принципу, что и традиционная лампа стартера, но у нее нет выключателя стартера. Вместо этого балласт лампы постоянно пропускает ток через оба электрода. Этот поток тока сконфигурирован так, что между двумя электродами существует разница зарядов, что создает напряжение на трубке.

Этот контент несовместим с этим устройством.

Когда включается флуоресцентный свет, нити обеих электродов очень быстро нагреваются, выкипая электронами, которые ионизируют газ в трубке. Когда газ ионизируется, разница напряжений между электродами создает электрическую дугу. Текущие заряженные частицы (красный цвет) возбуждают атомы ртути (серебра), запуская процесс освещения.

Объявление

Альтернативный метод, используемый в люминесцентных лампах с мгновенным запуском , заключается в приложении очень высокого начального напряжения к электродам.Это высокое напряжение создает коронный разряд. По сути, избыток электронов на поверхности электрода заставляет часть электронов попадать в газ. Эти свободные электроны ионизируют газ, и почти сразу разница напряжений между электродами вызывает электрическую дугу.

Независимо от того, как настроен пусковой механизм, конечный результат один и тот же: прохождение электрического тока через ионизированный газ. Этот вид газового разряда имеет своеобразное и проблематичное качество: если не контролировать ток, он будет постоянно увеличиваться и, возможно, взорвет осветительную арматуру.В следующем разделе мы узнаем, почему это так, и посмотрим, как люминесцентная лампа обеспечивает бесперебойную работу.

.

Вниз по трубам - как работают люминесцентные лампы

Центральным элементом люминесцентной лампы является герметичная стеклянная трубка . Трубка содержит небольшое количество ртути и инертный газ, обычно аргон , находящийся под очень низким давлением. Трубка также содержит порошок люминофора , нанесенный по внутренней стороне стекла. Трубка имеет два электрода , по одному на каждом конце, которые подключены к электрической цепи. Электрическая цепь, которую мы рассмотрим позже, подключена к источнику переменного тока (AC).

Когда вы включаете лампу, ток течет по электрической цепи к электродам. На электродах имеется значительное напряжение, поэтому электроны будут мигрировать через газ от одного конца трубки к другому. Эта энергия превращает часть ртути в трубке из жидкости в газ. По мере того как электроны и заряженные атомы движутся по трубке, некоторые из них сталкиваются с атомами газообразной ртути. Эти столкновения возбуждают атомы, выталкивая электроны на более высокие энергетические уровни.Когда электроны возвращаются к своему первоначальному уровню энергии, они испускают световые фотоны.

Объявление

Как мы видели в предыдущем разделе, длина волны фотона определяется конкретным расположением электронов в атоме. Электроны в атомах ртути расположены таким образом, что они в основном испускают световые фотоны в ультрафиолетовом диапазоне длин волн . Наши глаза не регистрируют ультрафиолетовые фотоны, поэтому этот вид света необходимо преобразовать в видимый свет, чтобы осветить лампу.

Вот здесь-то и появляется порошковое покрытие трубки. Люминофор - это вещества, излучающие свет при воздействии света. Когда фотон попадает в атом люминофора, один из электронов люминофора перескакивает на более высокий энергетический уровень, и атом нагревается. Когда электрон возвращается на свой нормальный уровень, он выделяет энергию в виде другого фотона. Этот фотон имеет меньше энергии, чем исходный фотон, потому что некоторая энергия была потеряна в виде тепла. В люминесцентной лампе излучаемый свет находится в видимом спектре - люминофор излучает белого света, который мы можем видеть.Производители могут изменять цвет света, используя различные комбинации люминофоров.

Этот контент несовместим с этим устройством.

Обычные лампы накаливания также излучают довольно много ультрафиолетового света, но они не преобразуют его в видимый свет. Следовательно, много энергии, используемой для питания лампы накаливания, тратится впустую. Люминесцентная лампа заставляет работать этот невидимый свет, поэтому на эффективнее .Лампы накаливания также теряют больше энергии из-за тепловыделения, чем люминесцентные лампы. В целом, обычная люминесцентная лампа в четыре-шесть раз эффективнее лампы накаливания. Однако люди обычно используют в доме лампы накаливания, поскольку они излучают более «теплый» свет - свет с большим количеством красного и меньшим количеством синего.

Как мы видели, вся система люминесцентных ламп зависит от электрического тока, протекающего через газ в стеклянной трубке. В следующем разделе мы увидим, что люминесцентная лампа должна делать, чтобы установить этот ток.

.

Люминесцентная лампа - Простая английская Википедия, бесплатная энциклопедия

Традиционная люминесцентная лампа в форме трубки в простом приспособлении.

Люминесцентная лампа - это тип электрического света (лампы), в котором используется ультрафиолет, излучаемый парами ртути, для возбуждения люминофора, излучающего видимый свет. Есть два основных типа: традиционные флуоресцентные и компактные люминесцентные. Эта статья о традиционных люминесцентных лампах (с прямой трубкой).

Закупочная цена люминесцентной лампы часто намного выше, чем стоимость лампы накаливания той же мощности, и свет люминесцентных ламп выглядит иначе, чем свет ламп накаливания. [1] Люминесцентные лампы имеют более длительный срок службы и потребляют меньше энергии, чем лампы накаливания той же яркости. Люминесцентная лампа может сэкономить более 30 долларов США на расходах на электроэнергию в течение срока службы лампы по сравнению с лампой накаливания. [2]

Электрический ток пропускается к парам ртути внутри трубки, заставляя их излучать ультрафиолетовый (УФ) свет. Люминофор на стенках трубки поглощает ультрафиолетовый свет. Это заставляет электрон подпрыгивать на орбиталь с более высокой энергией.Когда электрон опускается обратно на свою нормальную орбиталь, люминофор повторно излучает свою энергию в виде видимого света.

Балласт предотвращает прохождение слишком большого количества электричества через трубку. Он также запускает лампу с высоким напряжением на долю секунды при включении. Балласт расположен внутри светильника в традиционных светильниках люминесцентных ламп. В компактных люминесцентных лампах балласт находится в основании или рядом с основанием лампы. Есть два типа балластов: магнитные и электронные.Магнитные балласты в основном вышли из употребления, так как они менее эффективны, чем электронные балласты, они вызывают мерцание лампы и не запускаются мгновенно. Электронные балласты когда-то были дороже магнитных балластов, но сейчас цена примерно такая же.

Средний срок службы люминесцентной лампы в 8–15 раз больше, чем у лампы накаливания. [3] Люминесцентные лампы обычно имеют номинальный срок службы от 7000 до 15000 часов, тогда как лампы накаливания обычно производятся с расчетным сроком службы 750 или 1000 часов. [4] [5] [6]

Срок службы любой лампы зависит от многих факторов, включая рабочее напряжение, производственные дефекты, воздействие скачков напряжения, механические удары, частоту циклов включения и выключения, лампы ориентация и температура окружающей среды. Срок службы люминесцентной лампы значительно короче, если ее часто включать и выключать. В случае 5-минутного цикла включения / выключения срок службы люминесцентной лампы может быть сокращен до «близкого к сроку службы ламп накаливания». [7] Программа US Energy Star рекомендует оставлять люминесцентные лампы включенными, когда выходите из комнаты менее чем на 15 минут, чтобы этой проблемы не возникало. Если свет необходимо часто включать и выключать, можно использовать люминесцентные лампы с холодным катодом. Люминесцентные лампы с холодным катодом рассчитаны на гораздо большее количество циклов включения / выключения, чем стандартные лампы.

Ртуть внутри трубки токсична и превращает эти лампы в опасные отходы. После того, как луковицы перестанут работать, их необходимо сдать в центр утилизации.При нормальном использовании ртуть не может улетучиться, хотя она улетучится, если лампочка сломана. Если одна лампочка выходит из строя, обычно это не проблема. Рекомендуется открывать окна, чтобы проветрить комнату, и убирать разбитое стекло изолентой вместо пылесоса.

Многие люди и предприятия не хотят использовать люминесцентные лампы из-за содержания в них ртути. Возможными альтернативами являются галогенные, светодиодные и традиционные лампы накаливания.

Светодиодные трубки могут быть установлены в люминесцентные лампы, но иногда электрику необходимо сначала перемонтировать светильник, чтобы удалить балласт.

.

Смотрите также