Как зависит мощность лампы и ток в ней от напряжения


Лампы накаливания и напряжение в сети / Блог компании LampTest / Хабр

С помощью прибора Viso LightSpion и ЛАТРа, которому уже 46 лет, мы с Глафирой провели эксперимент, результаты которого меня удивили.


Раньше в России в основном использовался стандарт сетевого напряжения 220 вольт. С 2005 года по ГОСТ 29322-92 в сети должно быть напряжение 230 В ±10%, то есть от 207 до 253 вольт. Старый стандарт 220 В попадает в этот диапазон, поэтому фактически со старым оборудованием никто ничего не делал — в большинстве розеток нашей страны как было 220, так и осталось. На момент эксперимента у меня в сети было 222 В, хотя утром бывает и 230 вольт.

Я измерил световой поток обычной лампочки накаливания при разных напряжениях, задавая их с помощью ЛАТРа.
По стандарту лампа 60 Вт должна давать 710 Лм. Для эксперимента я использовал матовую лампу 230 В 60 Вт Osram Classic «CLAS A FR60 230V E27/ES», на упаковке которой указано значение светового потока — 710 Лм.

При напряжении 231 вольт лампа потребляет 61 ватт и даёт 628 Лм.

На напряжении 220 вольт мощность снижается до 56 Вт, а световой поток до 555 Лм.

На нижнем пределе по стандарту — 207 В, мощность уже 52 Вт и 60-ваттная лампа светит, как 40-ваттная — всего 427 Лм.

В сельской местности напряжение иногда проседает до 180 вольт. В этом случае 60-ваттная лампа «превращается» в 25-ваттную — всего 271 Лм.

Вот результаты моих измерений 60-ваттной лампы на разных напряжениях:

180 В — 271 Лм
200 В — 416 Лм
207 В — 427 Лм
210 В — 489 Лм
215 В — 538 Лм
220 В — 555 Лм
225 В — 610 Лм
230 В — 628 Лм
235 В — 687 Лм
240 В — 788 Лм
244 В — 851 Лм

На всякий случай я проверил, как поведёт себя хорошая светодиодная лампа при изменении сетевого напряжения. Для эксперимента я использовал лампу IKEA RYET 703.115.98 LED 1461G13.

230 вольт.

180 вольт.

При изменении сетевого напряжения на 50 вольт, яркость лампы не меняется (небольшие отличия в цифрах — погрешность измерения).

У всех хороших светодиодных ламп есть внутренний стабилизатор, поэтому они одинаково светят при очень большом изменении входного напряжения. Кстати, благодаря этому свойству там, где напряжение в сети бывает очень низким, светодиодные лампы помогут решить проблему достаточного освещения.

Как показало моё большое тестирование ламп накаливания (http://ammo1.livejournal.com/627155.html) эти лампы на номинальном напряжении почти всегда дают меньше света, чем заявлено.

Так как в большинстве розеток России по прежнему 220 вольт, при тестировании светодиодных ламп я принимаю за значение эквивалента 60-ваттной лампы накаливания 550 Лм, а не 710 Лм, которые должны быть по стандарту. Важно сравнивать свет ламп в реальной обстановке, а не по стандартам.

© 2015, Алексей Надёжин

Напряжение и ток | Основные понятия электричества

  • Сетевые сайты:
    • Последний
    • Новости
    • Технические статьи
    • Последний
    • Проектов
    • Образование
    • Последний
    • Новости
    • Технические статьи
    • Обзор рынка
    • Образование
    • Последний
    • Новости
    • Мнение
    • Интервью
    • Особенности продукта
    • Исследования
    • Форумы
  • Авторизоваться
  • Присоединиться
    • Авторизоваться
    • Присоединиться к AAC
    • Или войдите с помощью

      • Facebook
      • Google

0:00 / 0:00

  • Подкаст
  • Последний
  • Подписывайся
.Закон

Ома - Как соотносятся напряжение, ток и сопротивление | Закон Ома

  • Сетевые сайты:
    • Последний
    • Новости
    • Технические статьи
    • Последний
    • Проектов
    • Образование
    • Последний
    • Новости
    • Технические статьи
    • Обзор рынка
    • Образование
    • Последний
    • Новости
    • Мнение
    • Интервью
    • Особенности продукта
    • Исследования
    • Форумы
  • Авторизоваться
  • Присоединиться
    • Авторизоваться
    • Присоединиться к AAC
    • Или войдите с помощью

      • Facebook
      • Google

0:00 / 0:00

  • Подкаст
  • Последний
  • Подписывайся
    • Google
    • Spotify
    • Яблоко
    • iHeartRadio
    • Стец
.

Напряжение, ток, сопротивление и закон Ома

Добавлено в избранное Любимый 105

Основы электроэнергетики

Приступая к изучению мира электричества и электроники, важно начать с понимания основ напряжения, тока и сопротивления. Это три основных строительных блока, необходимых для управления электричеством и его использования. Поначалу эти концепции могут быть трудными для понимания, потому что мы не можем их «видеть».Невооруженным глазом нельзя увидеть энергию, протекающую по проводу, или напряжение батареи, стоящей на столе. Даже молния в небе, хотя и видимая, на самом деле не является обменом энергии между облаками и землей, а является реакцией в воздухе на энергию, проходящую через него. Чтобы обнаружить эту передачу энергии, мы должны использовать измерительные инструменты, такие как мультиметры, анализаторы спектра и осциллографы, чтобы визуализировать, что происходит с зарядом в системе. Однако не бойтесь, это руководство даст вам общее представление о напряжении, токе и сопротивлении, а также о том, как они соотносятся друг с другом.

Георг Ом

Рассмотрено в этом учебном пособии

  • Как электрический заряд соотносится с напряжением, током и сопротивлением.
  • Что такое напряжение, сила тока и сопротивление.
  • Что такое закон Ома и как его использовать для понимания электричества.
  • Простой эксперимент для демонстрации этих концепций.

Рекомендуемая литература

и nbsp

и nbsp

Электрический заряд

Электричество - это движение электронов.Электроны создают заряд, который мы можем использовать для работы. Ваша лампочка, стереосистема, телефон и т. Д. - все используют движение электронов для выполнения работы. Все они работают, используя один и тот же основной источник энергии: движение электронов.

Три основных принципа этого руководства можно объяснить с помощью электронов или, более конкретно, заряда, который они создают:

  • Напряжение - это разница в заряде между двумя точками.
  • Текущий - это скорость, с которой происходит начисление.
  • Сопротивление - это способность материала сопротивляться прохождению заряда (тока).

Итак, когда мы говорим об этих величинах, мы на самом деле описываем движение заряда и, следовательно, поведение электронов. Цепь - это замкнутый контур, который позволяет заряду перемещаться из одного места в другое. Компоненты схемы позволяют нам контролировать этот заряд и использовать его для работы.

Георг Ом был баварским ученым, изучавшим электричество. Ом начинается с описания единицы сопротивления, которая определяется током и напряжением.Итак, начнем с напряжения и продолжим.

Напряжение

Мы определяем напряжение как количество потенциальной энергии между двумя точками цепи. Одна точка заряжена больше, чем другая. Эта разница в заряде между двумя точками называется напряжением. Он измеряется в вольтах, что технически представляет собой разность потенциалов между двумя точками, которые передают один джоуль энергии на каждый кулон заряда, который проходит через них (не паникуйте, если это не имеет смысла, все будет объяснено).Единица «вольт» названа в честь итальянского физика Алессандро Вольта, который изобрел то, что считается первой химической батареей. Напряжение представлено в уравнениях и схемах буквой «V».

При описании напряжения, тока и сопротивления часто используется аналогия с резервуаром для воды. По этой аналогии заряд представлен количеством воды , напряжение представлено давлением воды , а ток представлен потоком воды . Итак, для этой аналогии запомните:

  • Вода = Заряд
  • Давление = Напряжение
  • Расход = Текущий

Рассмотрим резервуар для воды на определенной высоте над землей.На дне этой емкости находится шланг.

Давление на конце шланга может представлять напряжение. Вода в баке представляет собой заряд. Чем больше воды в баке, тем выше заряд, тем больше давление измеряется на конце шланга.

Мы можем представить этот резервуар как батарею, место, где мы накапливаем определенное количество энергии, а затем высвобождаем ее. Если мы сливаем из нашего бака определенное количество жидкости, давление, создаваемое на конце шланга, падает. Мы можем думать об этом как об уменьшении напряжения, например, когда фонарик тускнеет по мере разрядки батарей.Также уменьшается количество воды, протекающей через шланг. Меньшее давление означает, что течет меньше воды, что приводит нас к течению.

Текущий

Мы можем представить количество воды, текущей по шлангу из бака, как ток. Чем выше давление, тем выше расход, и наоборот. С водой мы бы измерили объем воды, протекающей через шланг за определенный период времени.18 электронов (1 кулон) в секунду проходят через точку в цепи. Ампер в уравнениях обозначается буквой «I».

Предположим теперь, что у нас есть два резервуара, каждый со шлангом, идущим снизу. В каждом резервуаре одинаковое количество воды, но шланг одного резервуара уже, чем шланг другого.

Мы измеряем одинаковое давление на конце любого шланга, но когда вода начинает течь, расход воды в баке с более узким шлангом будет меньше, чем расход воды в баке с более широкий шланг.С точки зрения электричества, ток через более узкий шланг меньше, чем через более широкий шланг. Если мы хотим, чтобы поток через оба шланга был одинаковым, мы должны увеличить количество воды (заряда) в баке с помощью более узкого шланга.

Это увеличивает давление (напряжение) на конце более узкого шланга, проталкивая больше воды через бак. Это аналогично увеличению напряжения, которое вызывает увеличение тока.

Теперь мы начинаем видеть взаимосвязь между напряжением и током.Но здесь следует учитывать третий фактор: ширину шланга. В этой аналогии ширина шланга - это сопротивление. Это означает, что нам нужно добавить еще один термин в нашу модель:

.
  • Вода = заряд (измеряется в кулонах)
  • Давление = напряжение (измеряется в вольтах)
  • Расход = ток (измеряется в амперах, или для краткости «амперах»)
  • Ширина шланга = сопротивление

Сопротивление

Снова рассмотрим наши два резервуара для воды, один с узкой трубой, а другой с широкой трубой.

Само собой разумеется, что мы не можем пропустить через узкую трубу такой же объем, как более широкая, при том же давлении. Это сопротивление. Узкая труба «сопротивляется» потоку воды через нее, даже если вода находится под тем же давлением, что и резервуар с более широкой трубой.

В электрических терминах это представлено двумя цепями с одинаковым напряжением и разным сопротивлением. Цепь с более высоким сопротивлением позволит протекать меньшему количеству заряда, то есть в цепи с более высоким сопротивлением будет меньше тока, протекающего через нее.18 электронов. Это значение обычно представлено на схемах греческой буквой «& ohm;», которая называется омега и произносится как «ом».

Закон Ома

Объединив элементы напряжения, тока и сопротивления, Ом разработал формулу:

Где

  • В = Напряжение в вольтах
  • I = ток в амперах
  • R = Сопротивление в Ом

Это называется законом Ома.Скажем, например, что у нас есть цепь с потенциалом 1 вольт, током 1 ампер и сопротивлением 1 Ом. Используя закон Ома, мы можем сказать:

Допустим, это наш резервуар с широким шлангом. Количество воды в баке определяется как 1 В, а «узость» (сопротивление потоку) шланга определяется как 1 Ом. Используя закон Ома, это дает нам ток (ток) в 1 ампер.

Используя эту аналогию, давайте теперь посмотрим на бак с узким шлангом. Поскольку шланг более узкий, его сопротивление потоку выше.Определим это сопротивление как 2 Ом. Количество воды в резервуаре такое же, как и в другом резервуаре, поэтому, используя закон Ома, наше уравнение для резервуара с узким шлангом составляет

.

а какой ток? Поскольку сопротивление больше, а напряжение такое же, это дает нам значение тока 0,5 А:

Значит, в баке с большим сопротивлением ток меньше. Теперь мы видим, что если мы знаем два значения закона Ома, мы можем решить третье.Продемонстрируем это на эксперименте.

Эксперимент по закону Ома

Для этого эксперимента мы хотим использовать батарею на 9 В для питания светодиода. Светодиоды хрупкие и могут пропускать через них только определенное количество тока, прежде чем они перегорят. В документации к светодиоду всегда будет «текущий рейтинг». Это максимальное количество тока, которое может пройти через конкретный светодиод, прежде чем он перегорит.

Необходимые материалы

Для проведения экспериментов, перечисленных в конце руководства, вам потребуется:

ПРИМЕЧАНИЕ. Светодиоды - это так называемые «неомические» устройства.Это означает, что уравнение для тока, протекающего через сам светодиод, не так просто, как V = IR. Светодиод вызывает в цепи то, что называется «падением напряжения», тем самым изменяя величину протекающего через нее тока. Однако в этом эксперименте мы просто пытаемся защитить светодиод от перегрузки по току, поэтому мы пренебрегаем токовыми характеристиками светодиода и выбираем номинал резистора, используя закон Ома, чтобы быть уверенным, что ток через светодиод безопасно ниже 20 мА.

В этом примере у нас есть батарея на 9 В и красный светодиод с номинальным током 20 мА, или 0.020 ампер. На всякий случай мы бы предпочли не управлять максимальным током светодиода, а его рекомендуемым током, который указан в его техническом описании как 18 мА или 0,018 ампер. Если просто подключить светодиод непосредственно к батарее, значения закона Ома будут выглядеть так:

следовательно:

, а поскольку сопротивления еще нет:

Деление на ноль дает бесконечный ток! Что ж, на практике не бесконечно, но столько тока, сколько может дать батарея. Поскольку мы НЕ хотим, чтобы через светодиод проходил такой большой ток, нам понадобится резистор.Наша схема должна выглядеть так:

Мы можем использовать закон Ома точно так же, чтобы определить значение резистора, которое даст нам желаемое значение тока:

следовательно:

вставляем наши значения:

решение для сопротивления:

Итак, нам нужно сопротивление резистора около 500 Ом, чтобы ток, проходящий через светодиод, не превышал максимально допустимый.

500 Ом не является обычным значением для стандартных резисторов, поэтому в этом устройстве вместо него используется резистор 560 Ом.Вот как выглядит наше устройство вместе.

Успех! Мы выбрали номинал резистора, достаточно высокий, чтобы ток через светодиод не превышал его максимального номинала, но достаточно низкий, чтобы ток был достаточным, чтобы светодиод оставался красивым и ярким.

Этот пример светодиода / токоограничивающего резистора - частое явление в хобби-электронике. Вам часто придется использовать закон Ома, чтобы изменить величину тока, протекающего по цепи. Другой пример такой реализации - светодиодные платы LilyPad.

При такой настройке вместо того, чтобы выбирать резистор для светодиода, резистор уже встроен в светодиод, поэтому ограничение тока осуществляется без необходимости добавлять резистор вручную.

Ограничение тока до или после светодиода?

Чтобы немного усложнить задачу, вы можете разместить токоограничивающий резистор по обе стороны от светодиода, и он будет работать точно так же!

Многие люди, впервые изучающие электронику, борются с идеей, что резистор, ограничивающий ток, может находиться по обе стороны от светодиода, и схема по-прежнему будет работать как обычно.

Представьте себе реку в непрерывной петле, бесконечную, круглую, текущую реку. Если бы мы построили в нем плотину, то перестала бы течь вся река, а не только одна сторона. Теперь представьте, что мы помещаем водяное колесо в реку, которое замедляет течение реки. Неважно, где в круге находится водяное колесо, оно все равно замедлит поток на всей реке .

Это чрезмерное упрощение, поскольку токоограничивающий резистор нельзя размещать где-либо в цепи ; он может быть размещен на с любой стороны светодиода для выполнения своей функции.

Чтобы получить более научный ответ, обратимся к закону напряжения Кирхгофа. Именно из-за этого закона резистор, ограничивающий ток, может располагаться по обе стороны светодиода и при этом иметь тот же эффект. Для получения дополнительной информации и некоторых практических задач с использованием KVL посетите этот веб-сайт.

Ресурсы и движение вперед

Теперь вы должны понять концепции напряжения, тока, сопротивления и их взаимосвязь. Поздравляю! Большинство уравнений и законов для анализа цепей можно вывести непосредственно из закона Ома.Зная этот простой закон, вы понимаете концепцию, лежащую в основе анализа любой электрической цепи!

Эти концепции - лишь верхушка айсберга. Если вы хотите продолжить изучение более сложных приложений закона Ома и проектирования электрических цепей, обязательно ознакомьтесь со следующими руководствами.

.Закон

Ома (снова!) | Электробезопасность

  • Сетевые сайты:
    • Последний
    • Новости
    • Технические статьи
    • Последний
    • Проектов
    • Образование
    • Последний
    • Новости
    • Технические статьи
    • Обзор рынка
    • Образование
    • Последний
    • Новости
    • Мнение
    • Интервью
    • Особенности продукта
    • Исследования
    • Форумы
  • Авторизоваться
  • Присоединиться
    • Авторизоваться
    • Присоединиться к AAC
    • Или войдите с помощью

      • Facebook
      • Google

0:00 / 0:00

  • Подкаст
  • Последний
  • Подписывайся
    • Google
    • Spotify
    • Яблоко
    • iHeartRadio
    • брошюровщик
.

Смотрите также