Лампа накаливания с рефлектором как устройство для прогревания 7 букв


Лампа накаливания с рефлектором как устройство для прогревания в лечебных целях (медицинское), 7 букв

  1. Поиск слов
  2.   /  
  3. Кроссворд ответы
  4.   /  
  5. Лампа накаливания с рефлектором как устройство для прогревания в лечебных целях (медицинское), 7 букв

соллюкс

Слово "соллюкс" состоит из 7 букв:

— первая буква С

— вторая буква О

— третья буква Л

— четвертая буква Л

— пятая буква Ю

— шестая буква К

— седьмая буква С

Посмотреть значние слова "соллюкс" в словаре.

Альтернативные варианты определений к слову "соллюкс", всего найдено — 4 варианта:

Информация о применении лампы накаливания

- VCC

Миниатюрные лампы чувствительны к ударам и вибрации. Нить накала лампы представляет собой спиральную проволоку, поддерживаемую с обоих концов; как пружина, она может свободно колебаться. Со временем эта вибрация вызывает чрезмерное скручивание нити накала, что в конечном итоге приводит к выходу лампы из строя. Если удар, нанесенный лампе, будет достаточно сильным, немедленно произойдет сбой.

Анализ ударов и вибрации, а также испытания ламп обычно проводятся на очень раннем этапе их эксплуатации.Поэтому лампы редко выходят из строя. Однако с возрастом лампы нити накала становятся все более и более хрупкими и, следовательно, более уязвимыми к ударам и вибрации. При работе на постоянном токе нить накала будет охрупчиваться быстрее, чем при переменном токе из-за ранее описанной выемки. Кроме того, лампы более склонны к выходу из строя, когда через нить не проходит ток, поскольку нить накаливания менее гибкая в холодном состоянии.

Несмотря на то, что удары и вибрация являются основными факторами, снижающими надежность лампы, их редко можно избежать.Однако можно предпринять определенные меры для оптимизации производительности. • Используйте лампы накаливания с более низким напряжением, без анкеровки. Высшее

Лампы напряжения

обычно имеют более длинные нити с меньшим диаметром, поэтому, помимо того, что они не такие сильные, вдоль нити накала есть больше точек, где может произойти сбой. Кроме того, поскольку анкерные проволоки физически разделяют нить накала на разные сегменты, будет больше резонансных точек.

• Уменьшите номинальные характеристики ламп для снижения температуры нити накала.Это замедлит рост зерна и продлит время до охрупчивания.

• Поддерживайте постоянное напряжение на лампе в выключенном состоянии. Нить накала наиболее хрупкая в холодном состоянии.

• Выберите монтажное оборудование, чтобы изолировать лампы, чтобы по возможности гасить удары и вибрации.

.

Лампа накаливания | Статья о лампе накаливания по свободной энциклопедии

источника света, в котором преобразование электрической энергии в световую энергию происходит в результате нагрева огнеупорного проводника электрического тока. Впервые энергия Люминоуса была получена этим методом в 1872 году русским ученым А. Н. Лодыгиным, который пропустил электрический ток через угольный стержень, помещенный в закрытый вакуумированный сосуд. В 1879 году американский изобретатель Т. А. Эдисон представил достаточно прочную конструкцию лампы накаливания с углеродной нитью, которую можно было удобно производить в промышленных масштабах.В 1898–1908 гг. Несколько металлов (осмий, тантал и вольфрам) были испытаны в качестве тел накаливания, а в 1909 г. началось использование ламп накаливания с вольфрамовой нитью зигзагообразной формы. Лампы накаливания, наполненные азотом или инертными газами (аргон и криптон). появился в 1912–13; вольфрамовая нить была изготовлена ​​в форме спирали (спирали). Дальнейшие усовершенствования ламп накаливания были направлены на повышение световой отдачи за счет увеличения температуры тела накаливания при сохранении срока службы лампы.Использование макромолекулярных инертных газов с добавками галогенов для заполнения ламп накаливания позволило снизить загрязнение колбы лампы частицами диспергированного вольфрама и снизить скорость испарения вольфрамовой нити. Использование раскаленных тел в форме двойной спирали (спирали, намотанной из спирали) или тройной спирали уменьшило потери тепла через газ.

Все многочисленные разновидности ламп накаливания изготавливаются из стандартных деталей, хотя размеры и форма деталей различаются.Конструкция типичной лампы накаливания показана на рисунке 1. Внутри колбы тело накаливания (вольфрамовая спираль) прикреплено к стеклянной или металлической выхлопной трубе с помощью держателей из молибденовой проволоки. Концы спирали прикрепляем к концам выводов. Средняя часть выводных проводов изготовлена ​​из платинита или молибдена для создания герметичного соединения со стеклянным стержнем. Колба лампы при вакуумной обработке заполняется инертным газом; впоследствии выхлопная труба термосваривается, образуя наконечник.Для защиты наконечника и облегчения крепления колбы к патрону лампа снабжена цоколем, прикрепленным к колбе с помощью герметика.

Рисунок 1 . Схема электрической лампы накаливания: (1) стеклянная колба, (2) корпус накаливания, (3) держатели, (4) выхлопная труба, (5) выводы, (6) шток, (7) герметизирующий состав основания, (8) наконечник, (9) цоколь

Лампы накаливания классифицируются в зависимости от области использования (лампы для общего освещения, для фар и т. д.), в зависимости от их основной конструкции и световых свойств колбы (лампы с отражателем, декоративные лампы, и лампы с рассеивающим покрытием), или по форме корпуса накаливания (лампы с плоской спиралью, двойной спиралью и т. д.).По габаритным размерам лампы накаливания делятся на субминиатюрные, миниатюрные, малогабаритные, стандартные и большие. Например, лампы длиной менее 10 мм и диаметром 6 мм называются сверхминиатюрными, а большие лампы имеют длину более 175 мм и диаметр 80 мм.

Таблица 1. Световая отдача некоторых ламп
Световая отдача (люмен на ватт) Примечания
Керосиновая лампа......... <1
Лампа накаливания
с углеродной нитью. . . . 2–3
с танталовой нитью. . . 7 Общее освещение зданий и транспортных средств
с вольфрамовой нитью накала (вакуум) ........ 8–9
с двойной спиралью из вольфрама (газонаполненная, промышленный криптон)......... 12,5–13,5
с двойной спиралью из вольфрама (галогенные лампы) ..... 22–27 Специальные оптические инструменты
с плоской спиралью из вольфрама (галогенные лампы) .... 34,5 Малые кинопроекторы

Лампы накаливания изготавливаются на напряжение от долей вольта до сотен вольт и на мощность до десятков киловатт (кВт) .Например, прожекторная лампа мощностью 10 кВт имеет длину 475 мм и диаметр 275 мм. Увеличение рабочего напряжения на 1 процент относительно номинального напряжения увеличивает световой поток от лампы накаливания на 4 процента, но сокращает срок ее службы на 15 процентов. Кратковременное подключение лампы к напряжению, превышающему номинальное напряжение на 15 процентов, приводит к выходу лампы из строя. Срок службы лампы накаливания составляет от 5 часов для авиационных фар до 1000 часов для ламп, используемых в транспортной отрасли; поэтому лампы следует устанавливать в местах, позволяющих легко заменить их.Световая отдача ламп накаливания зависит от их конструкции, напряжения и мощности, а также от продолжительности службы; она составляет от 10 до 35 люмен на ватт. Значения световой отдачи для нескольких ламп разной конструкции приведены в таблицах 1 и 2.

Таблица 2. Световая отдача осветительных ламп, заполненных криптоном (при сроке службы 1000 часов)
Напряжение Мощность (Вт) Светоотдача (люмен на ватт)
127....................... 60 13,4
127 ................. ...... 75 14,4
127 ...................... 100 15,6
220 ....................... 60 11,7
220 ................ ....... 75 12,7
220 ...................... 100 13,8

По световой эффективности лампы накаливания уступают газоразрядным источникам света.Однако лампы накаливания проще в эксплуатации (не требуют пускателей и сложной арматуры) и практически не имеют ограничений по напряжению и мощности. Ежегодное производство ламп накаливания во всем мире составляет до 10 миллиардов; насчитывается более 2000 наименований ламп.

СПИСОК ЛИТЕРАТУРЫ

Скобелев В.М. «Лампы накаливания». В Справочная книга по свето- технике . Москва, 1956.
Ульмишек Л.Г. Производство электрических ламп накаливания , 5 изд.Москва-Ленинград, 1966.
Гуторов, М. М. Основы светотехники и источники света . Москва, 1968.

Большая Советская Энциклопедия, 3-е издание (1970-1979). © 2010 The Gale Group, Inc. Все права защищены.

.

Canon: Технология Canon | Canon Science Lab

Для этого сайта требуется браузер с поддержкой JavaScript.

Лампы накаливания и люминесцентные лампы

Мы не можем производить солнечный свет, но мы можем создать подобное освещение. Примеры включают лампы накаливания и люминесцентное освещение.

То, что излучает свет, известно как источник света.
Источники света можно разделить на источники естественного света, такие как солнце, звезды, молния и биолюминесценция, и источники искусственного света, включая лампы накаливания, люминесцентные лампы и натриевые лампы.Их также можно классифицировать по характеристикам интенсивности света, то есть постоянным источникам света, которые излучают одинаковое количество света в течение фиксированного периода времени (например, солнце и лампы накаливания), и источникам света, которые меняются во времени. Люминесцентное освещение может казаться постоянным, но на самом деле оно изменяется в соответствии с частотой источника питания. Человеческий глаз просто не способен обнаруживать такие быстрые изменения.

Лампа накаливания светит от тепла

Лампа накаливания кажется желтоватой по сравнению с флуоресцентным светом.Это потому, что лампы накаливания производят свет от тепла. В лампе накаливания нагревается нить. Нити накаливания сделаны из двойных спиралей вольфрама, одного из видов металла. Вольфрам имеет высокое электрическое сопротивление, заставляя его светиться (накаливаться) при прохождении электрического тока. Электрический ток из-за высокого электрического сопротивления приводит к нагреву из-за трения между материалом и электронами, которые проходят через материал. Вольфрам используется для изготовления нитей лампы накаливания, поскольку он чрезвычайно устойчив к плавлению при высоких температурах.Он также не горит, потому что в лампы накаливания впрыскивается газ, чтобы удалить весь кислород.

Лампа накаливания была изобретена Томасом Эдисоном в 1879 году. В то время нити представляли собой карбонизированные волокна, изготовленные путем удушения определенного вида бамбука, выращенного в Киото, Япония, но в наши дни для производства лампочек используются различные материалы и методы. Есть много типов лампочек, каждая из которых имеет свое предназначение. Например, есть кремнеземные лампы с частицами кремнезема, электростатически нанесенными на их внутреннюю поверхность для значительного улучшения светопропускания и рассеивания, криптоновые лампы, в которые впрыскивается криптон (более высокий атомный вес, чем обычно используемый газ аргон) для увеличения яркости, и рефлекторные лампы, в которых используется высокоэффективный газ. отражающий алюминий на их внутренней поверхности.

Флуоресцентный свет сложнее, чем кажется

Флуоресцентный свет, распространенный вид освещения в офисах, имеет более сложный механизм излучения света, чем лампа накаливания. Ультрафиолетовые лучи, создаваемые люминесцентными лампами, преобразуются в видимый свет, который мы можем видеть. Здесь важную роль играют явления электрического разряда, а также «возбужденное состояние» и «основное состояние» электронов. Начнем с рассмотрения основной конструкции люминесцентной лампы.Люминесцентные лампы представляют собой тонкие стеклянные трубки, покрытые люминесцентным материалом на своей внутренней поверхности.

Пары ртути впрыскиваются внутрь, а электроды прикреплены к обоим концам. Когда подается напряжение, электрический ток течет по электродам, заставляя нити на обоих концах нагреваться и начать испускать электроны. Затем небольшая газоразрядная лампа внутри люминесцентной лампы выключается; Электроны испускаются из электрода и начинают течь к положительному электроду.Именно эти электроны производят ультрафиолетовый свет.

Столкновение электронов и атомов внутри люминесцентных ламп

Давайте подробнее рассмотрим механизм излучения ультрафиолетовых лучей флуоресцентным светом. Электроны, испускаемые электродом, сталкиваются с атомами ртути, составляющими пар внутри стеклянной трубки. Это заставляет атомы ртути переходить в возбужденное состояние, в котором электроны на внешней орбите атомов и молекул получают энергию, заставляя их прыгать на более высокую орбиту.

Возбужденные атомы ртути постоянно пытаются вернуться в свое прежнее низкоэнергетическое состояние (основное состояние), поскольку они настолько нестабильны. Когда это происходит, разница энергий между двумя орбитальными уровнями высвобождается в виде света в форме ультрафиолетовых волн. Однако, поскольку ультрафиолетовые лучи не видны человеческому глазу, внутренняя часть стеклянной трубки покрыта флуоресцентным материалом, который преобразует ультрафиолетовые лучи в видимый свет. Именно это покрытие заставляет люминесцентные лампы светиться белым.Люминесцентные лампы не всегда прямые. Они бывают и в других формах, таких как кольца и луковицы. Некоторые типы люминесцентных ламп претерпели гениальные модификации, например, лампы, использующие металлическую линию на внешней поверхности трубки (тип быстрого запуска), устраняющую необходимость в газоразрядной лампе внутри.

Белые светодиоды, используемые в освещении

Светодиоды, используемые в освещении, излучают белый свет, похожий на солнечный. Белый свет создается, когда присутствуют три основных цвета света - RGB (красный, зеленый и синий).Сначала были только красные и зеленые светодиоды, но развитие синих светодиодов привело к разработке белых светодиодов для использования в освещении.
Есть два способа создать белые светодиоды. Первый - это «многокристальный метод», в котором комбинируются все три светодиода основного цвета, а второй - «однокристальный метод», сочетающий люминофор и синий светодиод. Многокомпонентный метод с использованием трех цветов требует баланса между яркостью и цветом для обеспечения равномерного освещения и требует, чтобы каждый из трех цветных чипов был оснащен цепью питания.

Это стало причиной разработки однокристального метода, который излучает почти белый (квази-белый) цвет с использованием одного синего светодиода и желтого люминофора. Это потому, что смешанные синий и желтый свет кажутся человеческому глазу почти белыми.
Используя однокристальный метод, были разработаны белые светодиоды, в которых используется синий светодиод в сочетании с желтым + красным люминофором или зеленым + красным люминофором для достижения более естественного белого света на основе светодиодов. Кроме того, недавно были разработаны светодиоды, которые излучают ближний ультрафиолетовый свет (светодиод ближнего ультрафиолетового света: длина волны 380-420 нм), и их использование в качестве источника возбуждающего света привело к появлению белых светодиодов, способных излучать весь видимый световой диапазон.

Источники света имеют «цветовую температуру»

В нашей повседневной жизни мы часто замечаем, что цвет одежды, видимый при флуоресцентном освещении в помещении, выглядит иначе при солнечном свете на открытом воздухе, и что одна и та же еда кажется более аппетитной при освещении лампами накаливания, чем при флуоресцентном. Вы когда-нибудь задумывались, что вызывает такие различия? Мы видим цвет объекта, когда свет падает на него и отражается обратно в наши глаза. Короче говоря, цвета, которые мы воспринимаем, изменяются в соответствии с составляющей длины волны источника света, освещающего объекты, которые мы видим.Это приводит к вышеупомянутым различиям, которые мы воспринимаем в освещении одежды и пищи.

Различия в цвете обозначаются «цветовой температурой». Цветовая температура - это числовое значение, представляющее цветность, а не температуру источника света. Все предметы излучают свет при нагревании до чрезвычайно высокой температуры. Цветовая температура указывает, какой цвет мы бы увидели, если бы нагревали до определенной температуры объект, который вообще не отражает свет, то есть «черное тело».Единица измерения, используемая в этом случае, - градусы Кельвина. Низкотемпературные объекты кажутся красными, а по мере нагрева становятся синими.

Как видно из таблицы ниже, цветовая температура красноватых цветов низкая, а синеватых - высокая. Цветовая температура используется для таких целей, как настройка цвета на мониторе компьютера.

Цветовая температура и источники света

Цветовая температура Источник света
10 000 Ясное небо
9 000 Мутное небо
8 000
7 000 Облачное небо
6 000 Лампа-вспышка
4,500 Белая люминесцентная лампа
4 000
3,500 Вольфрамовая лампа, 500 Вт
3 000 Восход, закат
2,500 Лампочка 100 Вт
2 000
1 000 При свечах
.

Смотрите также