Симистор как выключатель


принцип работы, проверка и включение, схемы

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.
Симистор с креплением под радиатор
  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Простой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 — 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Схема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 — 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

Что такое TRIAC: схема переключения и приложения

Силовые электронные переключатели, такие как BJT, SCR, IGBT, MOSFET и TRIAC, являются очень важными компонентами, когда дело доходит до схем переключения, таких как преобразователи постоянного тока в постоянный ток , Контроллеры скорости двигателя , Драйверы двигателей и , контроллеры частоты и т. Д. Каждое устройство имеет свои уникальные свойства и, следовательно, они имеют свои собственные специфические применения. В этом руководстве мы узнаем о TRIAC , которое является двунаправленным устройством, что означает, что оно может работать в обоих направлениях.Благодаря этому свойству TRIAC используется исключительно там, где задействован источник синусоидального переменного тока.

Введение в TRIAC

Термин TRIAC обозначает TRI или A альтернативный C текущий. Это трехконтактное переключающее устройство, аналогичное тиристору (тиристору), но оно может работать в обоих направлениях, так как оно создается путем объединения двух тиристоров в антипараллельном состоянии. Символ и вывод TRIAC показаны ниже.

Поскольку TRIAC является двунаправленным устройством, ток может течь либо от MT1 к MT2, либо от MT2 к MT1, когда терминал затвора срабатывает. Для TRIAC это напряжение запуска, которое должно быть приложено к клемме затвора, может быть положительным или отрицательным по отношению к клемме MT2. Таким образом, это переводит TRIAC в четыре рабочих режима , как указано ниже

  • Положительное напряжение на MT2 и положительный импульс на затвор (Квадрант 1)
  • Положительное напряжение на MT2 и отрицательный импульс на затвор (квадрант 2)
  • Отрицательное напряжение на MT2 и положительный импульс на затворе (квадрант 3)
  • Отрицательное напряжение на MT2 и отрицательный импульс на затворе (квадрант 4)

Характеристики V-I TRIAC

На рисунке ниже показано состояние TRIAC в каждом квадранте.

Характеристики включения и выключения TRIAC можно понять, посмотрев на график характеристик VI для TRIAC, который также показан на рисунке выше. Поскольку TRIAC - это просто комбинация двух SCR в антипараллельном направлении, график характеристик V-I похож на график SCR. Как вы можете видеть, TRIAC в основном работает в 1-м квадранте и 3 -м квадранте .

Характеристики включения

Чтобы включить TRIAC, положительное или отрицательное напряжение затвора / импульс должно быть подано на вывод затвора TRIAC.При срабатывании одного из двух SCR внутри, TRIAC начинает проводить в зависимости от полярности выводов MT1 и MT2. Если MT2 положительный, а MT1 отрицательный, первый SCR проводит, а если вывод MT2 отрицательный, а MT1 положительный, то второй SCR проводит. Таким образом, любой из SCR всегда остается включенным, что делает TRIAC идеальным для приложений переменного тока.

Минимальное напряжение, которое должно быть приложено к выводу затвора для включения симистора, называется пороговым напряжением затвора (V GT ) , а результирующий ток через вывод затвора называется пороговым током затвора (I GT ). После того, как это напряжение подается на вывод затвора, TRIAC смещается в прямом направлении и начинает проводить, время, необходимое для перехода TRIAC из выключенного состояния в состояние включения, называется временем включения (t на ).

Так же, как и SCR, TRIAC после включения останется включенным, если он не будет переключен. Но для этого условия ток нагрузки через TRIAC должен быть больше или равен току фиксации (I L ) TRIAC. Таким образом, можно заключить, что TRIAC останется включенным даже после удаления стробирующего импульса, пока ток нагрузки больше, чем значение тока фиксации.

Подобно току фиксации, существует еще одно важное значение тока, называемое током удержания. Минимальное значение тока для поддержания TRIAC в режиме прямой проводимости называется удерживающим током (I H ). TRIAC войдет в режим непрерывной проводимости только после прохождения через ток удержания и ток фиксации, как показано на графике выше. Также значение тока фиксации любого TRIAC всегда будет больше, чем значение тока удержания.

Характеристики отключения

Процесс выключения TRIAC или любого другого устройства питания называется коммутацией , а связанная с ним схема для выполнения задачи называется коммутационной схемой. Наиболее распространенный метод, используемый для отключения TRIAC, - это уменьшение тока нагрузки через TRIAC до тех пор, пока он не станет ниже значения тока удержания (I H ). Такой вид коммутации называется принудительной коммутацией в цепях постоянного тока.Мы узнаем больше о том, как TRIAC включается и выключается через его прикладные схемы.

Приложения TRIAC

TRIAC очень часто используется в местах, где необходимо контролировать мощность переменного тока, например, он используется в регуляторах скорости потолочных вентиляторов, схемах диммера ламп переменного тока и т. Д. Давайте рассмотрим простую схему переключения TRIAC, чтобы понять, как она работает на практике. .

Здесь мы использовали TRIAC для включения и выключения нагрузки переменного тока с помощью кнопки .Затем сетевой источник питания подключается к маленькой лампочке через TRIAC, как показано выше. Когда переключатель замкнут, фазное напряжение подается на вывод затвора симистора через резистор R1. Если это напряжение затвора выше порогового напряжения затвора, то через вывод затвора протекает ток, который будет больше, чем пороговый ток затвора.

В этом состоянии TRIAC входит в прямое смещение, и ток нагрузки будет проходить через лампу. Если нагрузка потребляет достаточно тока, TRIAC переходит в состояние фиксации.Но поскольку это источник питания переменного тока, напряжение будет достигать нуля в течение каждого полупериода, и, следовательно, ток также мгновенно достигнет нуля. Следовательно, фиксация в этой схеме невозможна, и TRIAC выключится, как только переключатель будет открыт, и здесь не требуется никакой коммутирующей схемы. Этот тип коммутации TRIAC называется естественной коммутацией . Теперь давайте соберем эту схему на макетной плате с использованием BT136 TRIAC и проверим, как она работает.

При работе с источниками питания переменного тока необходимо соблюдать особую осторожность. В целях безопасности снижается рабочее напряжение. Стандартное напряжение переменного тока 230 В 50 Гц (в Индии) понижается до 12 В 50 Гц с помощью трансформатора.Маленькая лампочка подключена как нагрузка. После завершения экспериментальная установка выглядит так, как показано ниже.

Когда кнопка нажата, контакт затвора получает напряжение затвора и, таким образом, TRIAC включается. Лампа будет светиться, пока кнопка удерживается нажатой. Как только кнопка будет отпущена, TRIAC перейдет в фиксированное состояние, но поскольку входное напряжение переменного тока, ток, хотя TRIAC будет ниже удерживающего тока, и, таким образом, TRIAC выключится, полную работу также можно найти в . видео приведено в конце этого руководства.

Управление TRIAC с помощью микроконтроллеров

Когда TRIAC используются в качестве регуляторов света или для управления фазой, импульс затвора, который подается на вывод затвора, должен управляться с помощью микроконтроллера. В этом случае штифт затвора также будет изолирован с помощью оптрона. Принципиальная схема для этого же показана ниже.

Для управления TRIAC с помощью сигнала 5V / 3.3V мы будем использовать оптрон , такой как MOC3021 , внутри которого есть TRIAC.Этот TRIAC может быть активирован 5 В / 3,3 В через светоизлучающий диод. Обычно сигнал ШИМ подается на вывод 1 st MOC3021, а частота и рабочий цикл сигнала ШИМ будут изменяться для получения желаемого выходного сигнала. Этот тип цепи обычно используется для регулировки яркости лампы или управления скоростью двигателя.

Эффект скорости - демпфирующие цепи

Все TRIAC страдают от проблемы, называемой эффектом скорости. То есть, когда терминал MT1 подвергается резкому увеличению напряжения из-за шума переключения, переходных процессов или скачков, TRIAC прерывает его в качестве сигнала переключения и автоматически включается.Это связано с наличием внутренней емкости между клеммами MT1 и MT2.

Самый простой способ решить эту проблему - использовать демпферную цепь. В приведенной выше схеме резистор R2 (50R) и конденсатор C1 (10 нФ) вместе образуют RC-цепь, которая действует как цепь демпфера. Любые пиковые напряжения, подаваемые на MT1, будут наблюдаться этой RC-цепью.

Эффект люфта

Другой распространенной проблемой, с которой столкнутся дизайнеры при использовании TRIAC, является эффект люфта.Эта проблема возникает, когда потенциометр используется для управления напряжением на затворе TRIAC. Когда POT установлен на минимальное значение, на вывод затвора не будет подаваться напряжение, и, таким образом, нагрузка будет отключена. Но когда POT установлен на максимальное значение, TRIAC не включится из-за эффекта емкости между выводами MT1 и MT2, этот конденсатор должен найти путь для разряда, иначе он не позволит TRIAC включиться. Этот эффект называется эффектом люфта. Эту проблему можно решить, просто включив резистор последовательно со схемой переключения, чтобы обеспечить путь для разряда конденсатора.

Радиочастотные помехи (RFI) и TRIAC

Цепи переключения

TRIAC более подвержены радиочастотным помехам (EFI), потому что при включении нагрузки ток внезапно повышается с 0 А до максимального значения, создавая, таким образом, всплеск электрических импульсов, который вызывает радиочастотный интерфейс. Чем больше ток нагрузки, тем хуже будут помехи. Использование цепей подавления, таких как LC-подавитель, решит эту проблему.

TRIAC - Ограничения

Когда требуется переключать формы сигналов переменного тока в обоих направлениях, очевидно, что TRIAC будет первым выбором, поскольку это единственный двунаправленный силовой электронный переключатель.Он действует так же, как два SCR, подключенных вплотную друг к другу, а также имеют одинаковые свойства. Хотя при разработке схем с использованием TRIAC необходимо учитывать следующие ограничения.

  • TRIAC имеет внутри две структуры SCR: одна проводит в течение положительной половины, а другая - во время отрицательной. Но они не срабатывают симметрично, вызывая разницу в положительном и отрицательном полупериоде выхода
  • .
  • Кроме того, поскольку переключение не является симметричным, оно приводит к высокоуровневым гармоникам, которые вызывают шум в цепи.
  • Эта проблема гармоник также приведет к электромагнитным помехам (EMI).
  • При использовании индуктивных нагрузок существует огромный риск протекания пускового тока по направлению к источнику, поэтому необходимо убедиться, что TRIAC полностью отключен, а индуктивная нагрузка безопасно разряжается по альтернативному пути.

.

Что такое симистор - переключатель симистора »Электроника

Симисторы - это полупроводниковые устройства, которые широко используются для коммутации переменного тока средней мощности - их преимущество в том, что они могут переключать обе половины переменного цикла.


Triac, Diac, SCR Учебное пособие включает:
Основы тиристоров Конструкция тиристорного устройства Работа тиристора Затвор отключающий тиристор, ГТО Характеристики тиристора Что такое симистор Технические характеристики симистора Обзор Diac


Симисторы - это электронные компоненты, которые широко используются в системах управления питанием переменного тока.Они могут переключать высокие напряжения и высокие уровни тока и по обеим частям сигнала переменного тока. Это делает схемы симисторов идеальными для использования в различных приложениях, где требуется переключение мощности.

В частности, симисторные схемы используются в регуляторах освещенности для домашнего освещения, а также во многих других ситуациях управления мощностью, включая управление двигателем и электронные переключатели.

Благодаря своим характеристикам симисторы, как правило, используются для электронных коммутационных устройств малой и средней мощности, а тиристоры используются для коммутации мощности переменного тока в очень тепловых режимах.

Среднетоковый симистор

Основы симистора

Симистор представляет собой развитие тиристора. В то время как тиристор может управлять током только в течение одной половины цикла, симистор управляет им в течение двух половин сигнала переменного тока.

Таким образом, симистор можно рассматривать как пару параллельных, но противоположных тиристоров с двумя вентилями, соединенными вместе, и анодом одного устройства, соединенным с катодом другого, и т. Д.

Форма сигнала переключения симистора

Тот факт, что действие переключения симистора происходит на обеих половинах сигнала переменного тока, означает, что для приложений электронного переключения переменного тока может использоваться полный цикл.Для базовых схем с тиристорами используется только половина формы волны, а это означает, что в базовых схемах, в которых используются тиристоры, не будут использоваться обе половины цикла. Для использования обеих половин требуются два устройства. Однако для симистора требуется только одно устройство для управления обеими половинами сигнала переменного тока, и во многих отношениях это идеальное решение для электронного переключателя переменного тока.

Символ симистора

Как и другие электронные компоненты, симистор имеет собственный символ схемы, который используется на принципиальных схемах, и это указывает на его двунаправленные свойства.Символ симистора можно рассматривать как пару символов тиристоров в противоположных смыслах, объединенных вместе.

Обозначение схемы симистора

Как и тиристор, симистор имеет три вывода. Однако их названия немного сложнее присвоить, потому что основные токоведущие выводы подключены к тому, что фактически является катодом одного тиристора, а анодом другого в пределах всего устройства.

Есть вентиль, который действует как спусковой крючок для включения устройства. В дополнение к этому, другие клеммы оба называются анодами или главными клеммами. Обычно они обозначаются как анод 1 и анод 2 или главный вывод 1 и главный вывод 2 (MT1 и MT2).При использовании симисторов МТ1 и МТ2 имеют очень похожие свойства.

Как работает симистор?

Прежде чем смотреть, как работает триак, полезно понять, как работает тиристор. Таким образом, можно понять основные концепции более простого полупроводникового прибора, а затем применить их к более сложному симистору.

Что касается работы симистора, то из условного обозначения схемы можно представить, что симистор состоит из двух тиристоров, включенных параллельно, но по-разному.Таким образом можно рассматривать работу симистора, хотя реальная работа на полупроводниковом уровне намного сложнее.

Эквивалентная схема симистора

Структура симистора показана ниже, и можно увидеть, что есть несколько областей из материала N-типа и P-типа, которые образуют фактически пару встречных тиристоров.

Базовая структура симистора

Симистор может вести себя по-разному - больше, чем тиристор. Он может проводить ток независимо от полярности напряжения на клеммах MT1 и MT2.Он также может запускаться как положительными, так и отрицательными токами затвора, независимо от полярности тока MT2. Это означает, что существует четыре режима или квадранта запуска:

  • I + Mode Ток MT2 равен + ve, ток затвора + ve
  • I- Mode Ток MT2 + ve, ток затвора -ve
  • III + Mode: Ток MT2 -ve, ток затвора + ve
  • III- Режим: Ток MT2 -ve, ток затвора -ve

Обнаружено, что чувствительность триггерного триака по току максимальна, когда токи MT2 и затвор имеют одинаковую полярность, т.е.е. оба положительные или оба отрицательные. Если токи затвора и МТ2 имеют противоположную полярность, тогда чувствительность обычно составляет примерно половину значения, когда они одинаковы.

Типичную ВАХ симистора можно увидеть на диаграмме ниже с обозначенными четырьмя различными квадрантами.

IV характеристика симистора

Применение симистора

Симисторы

используются во многих приложениях. Эти электронные компоненты часто используются при коммутации переменного тока малой и средней мощности.Там, где необходимо переключать большие уровни мощности, обычно используются два тиристора / тиристора, поскольку ими легче управлять.

Тем не менее, симисторы широко используются во многих приложениях:

  • Управление освещением - особенно бытовые диммеры.
  • Управление вентиляторами и небольшими двигателями.
  • Электронные переключатели для общего переключения и управления переменным током

Естественно, существует много других применений симисторов, но это одни из самых распространенных.

В одном конкретном приложении симисторы могут быть включены в модули, называемые твердотельными реле. Здесь оптическая версия этого полупроводникового устройства активируется светодиодным источником света, включающим твердотельное реле в соответствии с входным сигналом.

Обычно в твердотельных реле светодиодный источник света или инфракрасного излучения и оптический симистор содержатся в одном корпусе, при этом обеспечивается достаточная изоляция, чтобы выдерживать высокие напряжения, которые могут достигать сотен вольт или, возможно, даже больше.

Твердотельные реле бывают разных форм, но те, которые используются для переключения переменного тока, могут использовать симистор.

Использование симисторов

При использовании симисторов следует учитывать ряд моментов. Хотя эти полупроводниковые устройства работают очень хорошо, чтобы добиться от них максимальной производительности, необходимо понимать несколько советов по использованию симисторов.

Было обнаружено, что из-за их внутренней конструкции и небольших различий между двумя половинами эти электронные компоненты не срабатывают симметрично.Это приводит к генерации гармоник: чем менее симметрично срабатывает симистор, тем выше уровень создаваемых гармоник. Обычно нежелательно иметь высокие уровни гармоник в энергосистеме, и в результате симисторы не подходят для систем большой мощности. Вместо этого для этих систем можно использовать два тиристора, так как их срабатывание легче контролировать.

Чтобы помочь в преодолении проблемы несимметричного срабатывания симистора и возникающих в результате гармоник, другое полупроводниковое устройство, известное как диак (диодный переключатель переменного тока), часто подключается последовательно с затвором симистора.Включение этого полупроводникового устройства помогает сделать переключение более равномерным для обеих половин цикла и тем самым создать более эффективный электронный переключатель.

Это происходит из-за того, что характеристика переключения диака намного лучше, чем у симистора. Поскольку диак предотвращает протекание любого тока затвора до тех пор, пока напряжение срабатывания триггера не достигнет определенного значения в любом направлении, это делает точку срабатывания симистора более равномерной в обоих направлениях.

Внутренняя схема симисторного регулятора яркости

Примеры схем симистора

Есть много способов использования симисторов.Два приведенных ниже примера дают представление о том, что можно сделать с этими полупроводниковыми устройствами.

  • Простая схема электронного переключателя симистора: Симистор может функционировать как электронный переключатель - он может активировать запускающий импульс переключателя малой мощности для включения симистора для управления гораздо более высокими уровнями мощности, которые могут быть возможны с простой переключатель. Схема простого симисторного переключателя
  • Схема регулируемой мощности симистора или диммера: Одна из самых популярных схем симистора изменяет фазу на входе симистора для управления мощностью, которая может рассеиваться в нагрузке.
    Базовая схема симистора, использующая фазу входного сигнала для управления рассеиваемой мощностью в нагрузке

Можно использовать гораздо больше схем симистора. Устройство очень универсально и может использоваться в различных схемах, обычно для обеспечения различных форм переключения переменного тока.

Примечание по схемам и конструкции симистора:
Цепи симистора

могут переключать обе половины на переменную форму волны с помощью одного устройства, что делает их очень привлекательными для использования во многих коммутационных схемах переменного тока малой и средней мощности.

Подробнее о Симисторные схемы и конструкция

Характеристики симистора

Симисторы

имеют много характеристик, которые очень похожи на характеристики тиристоров, хотя, очевидно, они предназначены для работы симистора на обеих половинах цикла и должны интерпретироваться как таковые.

Однако, поскольку их работа очень похожа, они также являются базовыми типами спецификаций. Такие параметры, как ток срабатывания затвора, повторяющееся пиковое напряжение в закрытом состоянии и т.п., необходимы при проектировании схемы симистора, обеспечивая достаточный запас для надежной работы схемы.

Симисторы

- идеальные устройства для использования во многих приложениях переменного тока малой мощности. Симисторные схемы для использования в качестве диммеров и небольших электронных переключателей широко распространены, и их легко и легко реализовать. При использовании симисторов диаки часто включаются в схему, как упоминалось выше, чтобы помочь снизить уровень генерируемых гармоник.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор FET Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

.

Симисторы - Рабочие и прикладные схемы

Симистор можно сравнить с реле с фиксацией. Он мгновенно включится и закроется, как только он сработает, и будет оставаться закрытым, пока напряжение питания остается выше нуля вольт или полярность питания не изменяется.

Если питание переменного тока (переменного тока), симистор будет размыкаться в течение периодов, когда цикл переменного тока пересекает нулевую линию, но закрывается и включается при повторном срабатывании.

Преимущества симистора как статических переключателей

  • Симисторы можно эффективно заменить механическими переключателями или реле для управления нагрузками в цепях переменного тока.
  • Симисторы можно сконфигурировать для переключения относительно более тяжелых нагрузок посредством срабатывания минимального тока.
  • Когда симисторы проводят (замыкаются), они не вызывают эффекта дребезга, как в механических переключателях.
  • Когда симисторы выключаются (при переходе через ноль переменного тока), он делает это без каких-либо переходных процессов из-за противо-ЭДС и т. Д.
  • Симисторы также устраняют проблемы с плавлением контактов или дугового разряда и другие формы износа, которые обычно наблюдается в механических электрических переключателях.
  • Симисторы обладают гибким запуском, который позволяет переключать их в любой заданной точке входного цикла переменного тока через положительный сигнал низкого напряжения на затворе и общей земле.
  • Это напряжение срабатывания может быть от любого источника постоянного тока, такого как батарея, или выпрямленный сигнал от самого источника переменного тока. В любом случае симистор будет проходить периоды выключения всякий раз, когда каждый полупериод переменного тока проходит через линию пересечения нуля (тока), как показано ниже:

Как включить симистор

Симистор состоит из трех клеммы: Gate, A1, A2, как показано ниже:

Чтобы включить симистор, на его вывод затвора (G) должен быть подан ток триггера затвора.Это заставляет ток затвора течь через затвор и клемму A1. Ток затвора может быть положительным или отрицательным по отношению к выводу A1 симистора. Клемма A1 может быть подключена к отрицательной линии VSS или положительной линии VDD источника питания управления затвором.

Следующая диаграмма показывает упрощенную схему симистора, а также его внутреннюю кремниевую структуру.

Когда на затвор симистора подается ток срабатывания, он включается с помощью встроенных в него диодов, установленных последовательно между клеммой G и клеммой A1.Эти 2 диода установлены на переходах P1-N1 и P1-N2 симистора.

Квадранты запуска симистора

Запуск симистора осуществляется через четыре квадранта в зависимости от полярности тока затвора, как показано ниже:

Эти квадранты запуска могут применяться на практике в зависимости от семейства и класса симистора, как указано ниже:

Q2 и Q3 - рекомендуемые квадранты запуска для симисторов, поскольку они обеспечивают минимальное потребление и надежный запуск.

Квадрант запуска Q4 не рекомендуется, так как он требует более высокого тока затвора.

Важные параметры запуска для симисторов

Мы знаем, что симистор можно использовать для переключения мощной нагрузки переменного тока через его клеммы A1 / A2 через относительно небольшой источник запуска постоянного тока на клемме затвора.

При проектировании схемы управления симистором решающее значение приобретают параметры срабатывания затвора. Параметры запуска: ток срабатывания затвора симистора IGT, напряжение срабатывания затвора VGT и ток фиксации затвора IL.

  • Минимальный ток затвора, необходимый для включения симистора, называется током запуска затвора IGT. Это необходимо подать на затвор и вывод A1 симистора, который является общим для источника питания триггера затвора.
  • Ток затвора должен быть выше номинального значения для самой низкой указанной рабочей температуры. Это обеспечивает оптимальное срабатывание симистора при любых обстоятельствах. В идеале значение IGT должно в 2 раза превышать номинальное значение в таблице данных.
  • Триггерное напряжение, приложенное к затвору и клемме A1 симистора, называется VGT.Он применяется через резистор, о котором мы вскоре поговорим.
  • Ток затвора, который эффективно фиксирует симистор, является током фиксации и обозначается как LT. Фиксация может произойти, когда ток нагрузки достигнет значения LT, только после этого фиксация будет разрешена, даже если ток затвора снят.
  • Вышеуказанные параметры указаны для температуры окружающей среды 25 ° C и могут иметь отклонения при изменении этой температуры.

Неизолированный запуск симистора может выполняться в двух основных режимах, первый метод показан ниже:

Здесь положительное напряжение, равное VDD, прикладывается к затвору и выводу A1 симистора.В этой конфигурации мы видим, что A1 также подключен к Vss или отрицательной линии источника питания затвора. Это важно, иначе симистор никогда не ответит.

Второй метод заключается в подаче отрицательного напряжения на затвор симистора, как показано ниже:

Этот метод идентичен предыдущему, за исключением полярности. Поскольку затвор срабатывает отрицательным напряжением, клемма A1 теперь соединена совместно с линией VDD вместо Vss напряжения затвора-истока.Опять же, если этого не сделать, симистор не сработает.

Расчет резистора затвора

Резистор затвора устанавливает IGT или ток затвора симистора для необходимого срабатывания. Этот ток увеличивается, когда температура опускается ниже заданной температуры перехода 25 ° C.

Например, если заданное значение IGT составляет 10 мА при 25 ° C, оно может увеличиваться до 15 мА при 0 ° C.

Чтобы резистор мог обеспечивать достаточное IGT даже при 0 ° C, он должен быть рассчитан для максимально доступного VDD от источника.

Рекомендуемое значение составляет от 160 до 180 Ом на 1/4 Вт для VGT затвора 5 В. Более высокие значения также будут работать, если температура окружающей среды достаточно постоянна.

Запуск от внешнего источника постоянного тока или существующего переменного тока : Как показано на следующем рисунке, симистор можно переключать либо через внешний источник постоянного тока, например аккумулятор или солнечную панель, либо через адаптер переменного / постоянного тока. В качестве альтернативы он также может запускаться от самого существующего источника переменного тока.

Здесь переключатель S1 имеет незначительную нагрузку на него, поскольку он переключает симистор через резистор, вызывая минимальный ток, проходящий через S1, тем самым спасая его от любого вида износа.

Переключение симистора через герконовое реле : Для переключения симистора движущимся объектом может быть включен запуск на основе магнитного поля. Герконовый переключатель и магнит можно использовать для таких приложений, как показано ниже:

В этом приложении магнит прикреплен к движущемуся объекту. Когда движущаяся система проходит мимо герконового реле, она запускает симистор в проводимость через прикрепленный к нему магнит.

Герконовое реле может также использоваться, когда требуется электрическая изоляция между источником срабатывания и симистором, как показано ниже.

Здесь медная катушка подходящего размера намотана на герконовое реле, а клеммы катушки подключаются к потенциалу постоянного тока через переключатель. Каждый раз при нажатии переключателя происходит изолированное срабатывание симистора.

Благодаря тому, что герконовые реле рассчитаны на миллионы операций включения / выключения, эта система переключения становится чрезвычайно эффективной и надежной в долгосрочной перспективе.

Другой пример изолированного срабатывания симистора можно увидеть ниже, здесь внешний источник переменного тока используется для переключения симистора через разделительный трансформатор.

Еще одна форма изолированного запуска симисторов показана ниже с использованием ответвителей фотоэлементов. В этом методе светодиод и фотоэлемент или фотодиод монтируются как единое целое внутри одного корпуса. Эти оптопары легко доступны на рынке.

Необычное переключение симистора в виде цепи выключено / половинная / полная мощность показано на схеме ниже. Для снижения мощности на 50% диод включен последовательно с затвором симистора. Этот метод заставляет симистор включаться только на чередующиеся полупериоды положительного переменного тока на входе.

Схема может эффективно применяться для управления нагрузками нагревателя или другими резистивными нагрузками, имеющими тепловую инерцию. Это может не сработать для управления освещением, так как половина положительной частоты циклов переменного тока приведет к раздражающему мерцанию света; аналогичным образом этот запуск не рекомендуется для индуктивных нагрузок, таких как двигатели или трансформаторы.

Цепь триака с фиксацией сброса

Следующая концепция показывает, как можно использовать триак для создания фиксатора сброса с помощью пары кнопок.

Нажатие кнопки настройки фиксирует триак и нагрузку, а нажатие кнопки сброса сгибает защелку.

Цепи таймера задержки симистора

Симистор можно настроить как схему таймера задержки для включения или выключения нагрузки после заданной заранее заданной задержки.

В первом примере ниже показана схема таймера отключения с задержкой на основе симистора. Первоначально при подаче питания симистор включается.

Тем временем начинается зарядка 100 мкФ, и при достижении порога срабатывает UJT 2N2646, включая SCR C106.

SCR замыкает затвор на массу, отключая симистор. Задержка определяется настройкой 1M и номиналом последовательного конденсатора.

Следующая схема представляет собой схему таймера симистора задержки включения. При подаче питания симистор реагирует не сразу. Диак остается выключенным, пока конденсатор 100 мкФ заряжается до порога срабатывания.

Как только это происходит, диак срабатывает и включает симистор. Время задержки зависит от значений 1M и 100uF.

Следующая схема представляет собой другую версию таймера на основе симистора.При включении UJT переключается через конденсатор емкостью 100 мкФ. UJT удерживает переключатель SCR в положении ВЫКЛ, лишая симистор тока затвора, и, таким образом, симистор также остается выключенным.

Через какое-то время, в зависимости от настройки предустановки 1M, конденсатор полностью заряжается, выключая UJT. Теперь SCR включается, активируя симистор, а также нагрузку.

Цепь мигания лампы симистора

Эта схема мигания симистора может использоваться для мигания стандартной лампы накаливания с частотой, которая может регулироваться от 2 до 10 Гц.Схема работает путем выпрямления сетевого напряжения диодом 1N4004 вместе с переменной RC-цепью. В тот момент, когда электролитический конденсатор заряжается до напряжения пробоя диака, он вынужден разряжаться через диак, который, в свою очередь, запускает симистор, что приводит к миганию подключенной лампы.

После задержки, установленной управлением 100 кОм, конденсатор снова перезаряжается, вызывая повторение fla

.Учебное пособие по схемам для проектов

Basic Triac-SCR

by Lewis Loflin

На этой странице обсуждаются базовые симисторы и тиристоры. Симистор - это двунаправленный трехконтактный двойной тиристорный переключатель (SCR). Это устройство может переключать ток в любом направлении, подавая небольшой ток любой полярности между затвором и вторым главным контактом.

Симистор изготовлен путем объединения двух тиристоров в обратном параллельном соединении. Он используется в приложениях переменного тока, таких как регулировка яркости света, управление скоростью двигателя и т. Д.Симисторы также могут использоваться в микроконтроллере управления мощностью со схемой фазовой синхронизации.

Если кто-то не знаком с диодами и выпрямлением переменного тока, см. Следующее:


Включение / выключение диода

На рисунке выше изображен кремниевый управляемый выпрямитель (SCR) или тиристер. Это диод с «затвором». SCR не только проводит в одном направлении, как любой другой диод, но и затвор позволяет отключать и отключать саму проводимость. Когда переключатель ON нажат, SCR включается, и ток течет с отрицательного на положительный через SCR и нагрузку.После включения SCR будет оставаться включенным до тех пор, пока не будет нажат выключатель, нарушающий текущий путь.

Обратите внимание, что переключатель ON называется «нормально разомкнутым» (Н.О.) и при нажатии замыкает (замыкает) соединение. Выключатель OFF, называемый «нормально закрытым» (N.C.), разрывает (размыкает) соединение при нажатии. Оба они кнопочные.

В схеме над нагрузкой есть лампа постоянного тока. Нажмите переключатель S1, и включатся и будут продолжать оставаться включенными, пока не будет нажат переключатель S2.

В этом примере мы разместили диод последовательно с переключателем включения / выключения затвора. Когда вы нажимаете переключатель ON, двигатель запускается, загорается свет и т. Д. Когда переключатель отпускается, питание прекращается без использования переключателя OFF. Это связано с тем, что входное напряжение переменного тока возвращается к нулевому напряжению на 180 и 360 градусов, отключая SCR. И как диод, SCR проводит только половину цикла.

В этом примере схемы мы разместили переменный резистор (потенциометр) последовательно с диодом затвора.(Это было также известно как ручка регулировки громкости старого стиля.) «Поворачивая ручку», мы можем изменить точку срабатывания при включении SCR только части полупериода или, если сопротивление достаточно, выключить SCR.


Это иллюстрирует процесс с двухполупериодным нефильтрованным постоянным током

В другом примечании мы можем управлять двухполупериодным пульсирующим нефильтрованным постоянным током с помощью тиристора. См. Также «Основы выпрямления и фильтрации переменного тока»

.

Подробнее см. Что такое светоактивированный кремниевый управляемый выпрямитель? (LASCR) и спецификация оптопары h21C6 SCR.(PDF файл)

Выше представлена ​​практическая схема тестирования SCR. Лампа загорится только при нажатии Sw3. Лампа будет иметь половинную яркость, потому что тиристор действует как полуволновой выпрямитель. R4 может находиться в диапазоне от 100 до 470 Ом. Лампа должна быть полностью выключена, если выключатель не нажат или устройство не неисправно. (Полностью или частично закорочено.)

Эта схема также хороша для сравнения различных тиристоров одного и того же номера детали. Например, однажды у меня была неисправная печатная плата с шестью тиристорами, но один тиристор из шести при работе включался при совершенно другом напряжении срабатывания, чем остальные пять.Лампа имела другой уровень яркости, чем остальные пять. Замена этого одного SCR устранила эту очень дорогую печатную плату.


Знакомство с симисторами

Симистор - это твердотельный переключатель переменного тока. Небольшой ток на клемме затвора может переключать очень большие токи переменного тока. Думайте о симисторе как о двух последовательно соединенных тиристорах, в которых катод одного тиристора соединен с анодом другого и наоборот. Ворота соединены между собой. Поскольку у нас есть конфигурация с двумя тиристорами, можно переключать оба полупериода.

Примечание: я видел бумажные примеры использования двух тиристоров в качестве симистора, но это может не работать так же! Остерегайтесь этого.

В приведенном выше примере замыкание переключателя приведет к включению симистора. Идея состоит в том, чтобы использовать небольшой переключатель малой мощности для управления мощными устройствами, такими как двигатели или нагреватели. Опасность здесь заключается в том, что на самом переключателе присутствует высокое напряжение переменного тока. Это также может быть большой проблемой для твердотельных контроллеров, если они не используют маленькое реле, которое некоторые микроволновые печи делают именно так.

Выше представлена ​​практическая испытательная схема TRIAC. Нажмите любой переключатель, и лампа включится с половинной яркостью. Сожмите оба вместе на полную яркость. Это позволяет тестировать обе стороны SCR по отдельности. Яркость должна быть одинаковой для обеих сторон, иначе TRIAC неисправен. Если переключатель не нажат, лампа должна быть полностью выключена. R1 и R2 должны быть в диапазоне от 100 до 470 Ом.


Схема симистора с лучшим откликом и диак.

Ключ к успешному срабатыванию симистора состоит в том, чтобы убедиться, что затвор получает свое напряжение срабатывания со стороны главной клеммы 2 схемы (основной клеммы на противоположной стороне символа TRIAC от клеммы затвора).Идентификация клемм Mt1 и Mt2 должна выполняться с помощью номера детали TRIAC со ссылкой на технический паспорт или книгу.

DIAC, или «диод переменного тока», представляет собой триггерный диод, который проводит ток только после того, как его напряжение пробоя было кратковременно превышено. Когда это происходит, сопротивление DIAC резко уменьшается, что приводит к резкому уменьшению падения напряжения на самом DIAC, что приводит к резкому увеличению тока, протекающего через затвор симистора.

Это гарантирует быстрое и чистое резание TRIAC.DIAC остается в режиме проводимости до тех пор, пока напряжение не упадет до очень низкого значения, намного ниже напряжения срабатывания. Это называется удерживающим током. Ниже этого значения диак снова переключается в состояние высокого сопротивления (выключено). Это двунаправленное поведение, то есть обычно одинаковое как для положительного, так и для отрицательного полупериода.

Большинство DIAC имеют напряжение пробоя около 30 В. Таким образом, их поведение в некоторой степени похоже на (но гораздо более точно контролируется и происходит при более низких напряжениях, чем) неоновая лампа.

ЦИАП

не имеют электрода затвора, в отличие от некоторых других тиристоров. Некоторые TRIAC содержат встроенный DIAC последовательно (я никогда не видел такого в полевых условиях) с терминалом TRIAC для этой цели. ДИАП также называют симметричными триггерными диодами из-за симметрии их характеристической кривой. Поскольку DIAC являются двунаправленными устройствами, их выводы помечены не как анод и катод, а как A1 и A2 или Mt1 («Главный вывод») и Mt2. Большинство листов спецификации не удосуживаются маркировать A1 / A2 или Mt1 / Mt2.

Также см. Как проверить DIAC


Диммер для коммерческих ламп в странах с напряжением 220 В. Br100 - диак.

Диак обеспечивает более чистое переключение симистора. Диоды - это специализированные диоды Шокли, соединенные спина к спине.


Демпферы

Между МТ1 и МТ2 часто используется демпфирующая цепь (обычно RC-типа). Демпфирующие цепи используются для предотвращения преждевременного срабатывания, вызванного, например, скачками напряжения в сети переменного тока или индуктивными нагрузками, такими как двигатели.Кроме того, между затвором и MT1 можно подключить резистор затвора или конденсатор (или оба параллельно), чтобы дополнительно предотвратить ложное срабатывание. Это может увеличить требуемый ток срабатывания и, возможно, задержку выключения при разрядке конденсатора.

В этой схеме выше «горячая» сторона линии переключается, а нагрузка подключается к холодной или заземленной стороне. Резистор на 100 Ом и конденсатор 0,1 мкФ предназначены для демпфера симистора. Эти компоненты должны использоваться с индуктивными нагрузками, такими как двигатели, контакторы и т. Д.

Для получения дополнительной информации о вышеуказанном оптроне см. Оптоизолятор серии moc30xx (файл в формате pdf)

.

Смотрите также