Три провода в розетке как понять где ноль


Как определить фазу, ноль и заземление самому, подручными средствами?



Давайте попробуем разобраться, как в домашних условиях, не обладая сложными специализированными измерительными инструментами и электронными приборами, самому определить где фаза, где ноль, а где земля в проводке.


Из всех известных методов, наиболее простого определения фазы и ноля, мы отобрали самые, по нашему мнению, доступные в реализации и в то же время безопасные. По этой причине, в статье вы не увидите советов - как найти фазу с помощью картошки или же призывов к кратковременному касанию проводов различными частями тела.

 
На самом деле, вариантов определения фазы, нуля или заземления, например, в розетке, без применения специализированного оборудования не так уж и много, и порой, в зависимости от ваших целей и задач, бывает достаточно лишь знать стандарт цветовой маркировки электрических проводов принятый у нас, чтоб их различить.


Маркировка проводов по цвету


Действительно, самый простой способ определить фазу, ноль и землю у электрического провода, это посмотреть цветовую маркировку и сравнить с принятым стандартом. Каждая жила в современных проводах, применяемых в электропроводке, а также электрооборудовании имеет индивидуальную расцветку. Зная какому цвету жил какая соответствует функция (фаза, ноль или заземление), легко можно выполнять дальнейший монтаж.


Довольно часто, этого вполне достаточно, особенно в случаях, когда установка производится в новостройках или местах с довольно новой электропроводкой, сделанной профессиональными, компетентными электромонтажниками по всем современным правилам и стандартам.



В нашей стране, как и в Европе в целом, действует стандарт IEC 60446 2004 года, который жестко регламентирует цветовую маркировку электрических проводов. 


Согласно этому стандарту для квартирной электросети:


Рабочий ноль (нейтраль или ноль) - Синий провод или сине-белый


Защитный ноль (земля или заземление) - желто-зеленый провод


Фаза – Все остальные цвета среди которых – черный, белый, коричневый, красный и т.д.

 


Теперь, зная стандарт цветовой маркировки проводов, вы сможете без труда определять, какой провод какую функцию выполняет. Это касается большинства случаев, исключение могут составлять провода, подходящие к выключателям, переключателям и т.д., в силу принципиально иной схемы работы этого электрооборудования.


Если же вы не уверены в точном соответствии цветов жил проводов стандарту IEC 60446 2004, у вас старая проводка, вы не исключаете возможность ошибок или даже халатного отношения электромонтажников к своей работе, а может электриками проложены провода другого стандарта и соответственно иной цветовой маркировки, тогда переходим к практическому методу определения фазы и нуля (рабочего и защитного). 


КАК САМОМУ ОПРЕДЕЛИТЬ ФАЗУ, НОЛЬ и ЗАЗЕМЛЕНИЕ У ПРОВОДОВ


Итак, начнем по порядку:


ОПРЕДЕЛЕНИЕ ФАЗЫ


Для большего удобства, сперва всегда лучше определять какой из имеющихся проводов фаза. О том, как найти фазу цифровым мультиметром мы уже писали, а как быть если его нет, читайте ниже.

 

ОПРЕДЕЛЕНИЕ ФАЗЫ ИНДИКАТОРНОЙ ОТВЕРТКОЙ

 


 


Самый простой способ обнаружения фазного провода – это поиск с помощью индикаторной отвертки. Этот простейший инструмент должен быть у любого домашнего мастера, занимающегося электрикой в квартире – будь то полный электромонтаж, простая замена ламп или установка светильников, розеток и выключателей.


Принцип работы индикаторной отвертки прост – при касании жалом отвертки проводника под напряжением и одновременном касании контакта, на задней стороне отвертки, пальцем руки - загорается индикаторная лампа в корпусе инструмента, которая и сигнализирует о наличии напряжения. Таким образом легко можно узнать, какой провод фазный.

 

 


Принцип действия индикаторной отвертки прост - внутри индикаторной отвертки расположена лампа и сопротивление(резистор), при замыкании цепи (касании нами заднего контакта) лампа загорается. Сопротивление защищает нас от поражения электрическим током, оно снижает ток до минимального, безопасного уровня. 


Этот вариант определения фазы своими силами, наиболее предпочтителен и мы рекомендуем пользоваться именно им, тем более что стоимость индикаторной отвертки более чем доступная. Главным недостатком этого способа, является вероятность ошибочного срабатывания, когда индикаторная отвертка, реагируя на наводки, определяет наличие напряжения там, где его нет.


ОПРЕДЕЛЕНИЕ ФАЗЫ, НУЛЯ И ЗАЗЕМЛЕНИЯ КОНТРОЛЬНОЙ ЛАМПОЙ

 



Еще один способ, которым можно определить фазный, нулевой и провод заземления в современной трехпроводной электрической сети, это использование контрольной лампы. Способ неоднозначный, но действенный, требующий особой осторожности.


Чтоб начать определение, в первую очередь необходимо собрать само устройство контрольной лампы. Самый простой способ использовать патрон, с вкрученной туда лампой, а в клеммах патрона закрепить провода со снятой на концах изоляцией. Если же под рукой нет электрического патрона или нет времени что-то мастерить, можно воспользоваться обычной настольной лампой с электрической вилкой.

Технология определения фазы, нули и земли с помощью контрольной лампы максимально проста – поочередно соединяя провода лампы к проводам требующим определения, каждый с каждым. 


Определить фазу и ноль из двух проводов


В случае определения контрольной лампой фазного провода среди двух проводов вы лишь сможете узнать, есть фаза или нет, а какой именно из проводников фазный определить не удастся. Если при соединении проводов контрольной лампы к определяемым жилам она загорится, то значит один из проводов фазный, а второй скорее всего ноль. Если же не загорится, то скорее всего фазы среди них нет, либо нет нуля, чего тоже исключать нельзя.


Таким способом, скорее, удобнее проверять работоспособность проводки и правильность её монтажа. Определять фазу лучше индикаторной отверткой, а вот наличие нуля узнавать так.

 

Определить фазный провод в таком случае можно подключив один из концов, идущих от контрольной лампы, к заведомо известному нулю (например, к соответствующей клемме в электрощите), тогда при касании вторым концом к фазному проводнику, лампа загорится. Оставшийся провод соответственно ноль.


Найти фазу, ноль и заземление из трех проводов:


В такой трехпроводной системе часто возможно точно определить фазный, нулевой и заземляющий провод контрольной лампой.
Соединяем контакты, идущие от контрольной лампы поочередно к жилам требующего определения кабеля.


Действуем методом исключения: 

Находим положение, в котором лампа горит, это будет значить, что один из проводов фаза, а другой ноль.

 


 

 


После чего меняем положение одного из контактов контрольной лампы, далее возможны несколько вариантов:


- Если лампа не загорится (при наличии УЗО или дифференциального автомата защиты проверяемой линии они также могут сработать) значит оставшийся свободным провод – ФАЗА, а проверяемые НОЛЬ и ЗЕМЛЯ.

 

 


- Если после смены положения лампа ненадолго вспыхнет, при этом сразу сработает УЗО или диф. автомат (если они есть), значит оставшийся свободным провод – НОЛЬ, а проверяемые это ФАЗА и ЗАЗЕМЛЕНИЕ.

- Если линия не защищена устройством защитного отключения (УЗО) или дифференциальным автоматом, и свет будет гореть в двух положениях. В этом случае узнать какой провод рабочий ноль (нуль), а какой защитный (заземление), можно просто отключив в щите учета и распределения электроэнергии вводной кабель от клеммы заземления. После чего так же проверить контрольной лампой все жилы и, опять же методом исключения, в положении, когда лампа не горит опознать проводник заземления.

 


 


Как видите, в различных ситуациях, при разных схемах электропроводки, реализованных в квартире, способы и методы определения нуля, фазы и заземления меняются. Если вы столкнулись с ситуацией, не описанной в этой статье, обязательно пишите в комментариях к статье, мы постараемся вам помочь.


А если вы знаете еще, простые способы того, как в домашних условиях, без специализированного инструмента определить фазу, ноль и землю, пишите в комментариях. Статья будет обязательно дополнена. Главное требование, к методам определения, это простота, возможность обойтись в поиске лишь подручными, бытовыми средствами, имеющимися у многих.

Программирование сокетов

на Python (Руководство) - Real Python

Сокеты и API сокетов используются для отправки сообщений по сети. Они обеспечивают форму межпроцессного взаимодействия (IPC). Сеть может быть логической локальной сетью для компьютера или сетью, которая физически подключена к внешней сети, со своими собственными подключениями к другим сетям. Очевидным примером является Интернет, к которому вы подключаетесь через своего провайдера.

В этом руководстве есть три различных итерации построения сервера и клиента сокетов с помощью Python:

  1. Мы начнем обучение с рассмотрения простого сервера и клиента сокета.
  2. После того, как вы познакомились с API и принципами работы в этом начальном примере, мы рассмотрим улучшенную версию, которая обрабатывает несколько подключений одновременно.
  3. Наконец, мы перейдем к созданию примера сервера и клиента, которые функционируют как полноценное приложение для сокетов, со своим собственным настраиваемым заголовком и содержимым.

К концу этого руководства вы поймете, как использовать основные функции и методы в модуле сокетов Python для написания собственных клиент-серверных приложений.Это включает в себя демонстрацию того, как использовать настраиваемый класс для отправки сообщений и данных между конечными точками, которые вы можете создавать и использовать для своих собственных приложений.

Примеры в этом руководстве используют Python 3.6. Вы можете найти исходный код на GitHub.

Сети и розетки - большие предметы. О них написаны буквально тома. Если вы новичок в сокетах или сетях, это совершенно нормально, если вы чувствуете себя перегруженным всеми терминами и частями. Я знаю, что сделал!

Но не расстраивайтесь.Я написал для вас это руководство. Как и в случае с Python, мы можем учиться понемногу за раз. Воспользуйтесь функцией закладок в браузере и вернитесь, когда будете готовы к следующему разделу.

Приступим!

Фон

Розетки имеют долгую историю. Их использование началось с ARPANET в 1971 году, а позже стало API в операционной системе Berkeley Software Distribution (BSD), выпущенной в 1983 году, под названием Berkeley Sockets.

Когда в 1990-х годах появился Интернет, вместе с World Wide Web росло и сетевое программирование.Веб-серверы и браузеры были не единственными приложениями, использующими преимущества новых подключенных сетей и сокетов. Широкое распространение получили клиент-серверные приложения всех типов и размеров.

Сегодня, хотя основные протоколы, используемые API сокетов, развивались с годами, и мы видели новые, API низкого уровня остался прежним.

Наиболее распространенным типом приложений сокетов являются приложения клиент-сервер, в которых одна сторона выступает в роли сервера и ожидает соединений от клиентов.Это тип приложения, о котором я расскажу в этом руководстве. В частности, мы рассмотрим API сокетов для Интернет-сокетов, иногда называемых сокетами Беркли или BSD. Существуют также доменные сокеты Unix, которые могут использоваться только для связи между процессами на одном и том же хосте.

Обзор API сокетов

Модуль сокетов

Python предоставляет интерфейс к API сокетов Беркли. Это модуль, который мы будем использовать и обсуждать в этом руководстве.

.HOWTO по программированию сокетов

- документация Python 3.3.7

Аннотация

Розетки используются почти везде, но являются одними из самых неправильно понятые технологии вокруг. Это обзор розеток на 10 000 футов. На самом деле это не учебник - вам еще нужно поработать, чтобы что-то получить оперативный. Он не затрагивает тонкости (а их очень много), но Я надеюсь, что это даст вам достаточно знаний, чтобы начать их прилично использовать.

Розетки

Я буду говорить только об INET (т.е. IPv4), но они составляют не менее 99% используемые розетки. И я буду говорить только о сокетах STREAM (т. Е. TCP) - если только вы знать, что вы делаете (в этом случае этот HOWTO не для вас!), вы получите лучшее поведение и производительность от сокета STREAM, чем что-либо еще. Я буду попытаться раскрыть тайну того, что такое сокет, а также дать несколько советов о том, как работа с блокирующими и неблокирующими розетками. Но я начну с разговора о блокировка розеток. Вам нужно знать, как они работают, прежде чем начинать неблокирующие розетки.

Отчасти проблема с пониманием этих вещей состоит в том, что «сокет» может означать количество неуловимо разных вещей, в зависимости от контекста. Итак, сначала давайте сделаем различие между «клиентским» сокетом - конечной точкой разговора и «Серверная» розетка, которая больше похожа на операторский коммутатор. Клиент приложение (например, ваш браузер) использует исключительно «клиентские» сокеты; то веб-сервер, с которым он разговаривает, использует как «серверные», так и «клиентские» сокеты.

История

Из различных форм МПК , розетки, безусловно, самые популярные.На любой платформе есть вероятно, будут другие формы IPC, которые быстрее, но для кроссплатформенное общение, сокеты - это почти единственная игра в городе.

Они были изобретены в Беркли как часть разновидности BSD Unix. Они распространяются как лесной пожар с Интернетом. Не зря - комбинация розеток. с INET делает разговор с произвольными машинами по всему миру невероятно простым (по крайней мере, по сравнению с другими схемами).

Создание сокета

Грубо говоря, когда вы нажимали на ссылку, которая привела вас на эту страницу, ваш браузер сделал что-то вроде следующего:

 # создать INET, STREAMing сокет s = розетка.сокет (socket.AF_INET, socket.SOCK_STREAM) # теперь подключаемся к веб-серверу через порт 80 - обычный http порт s.connect (("www.python.org", 80)) 

Когда соединение завершится, сокет s может использоваться для отправки в запросе текста страницы. Тот же сокет будет читать ответить, а затем быть уничтоженным. Правильно, уничтожено. Клиентские сокеты обычно используются только для одного обмена (или небольшого набора последовательных обмены).

То, что происходит на веб-сервере, немного сложнее.Во-первых, веб-сервер создает «серверный сокет»:

 # создать INET, STREAMing сокет serversocket = socket.socket (socket.AF_INET, socket.SOCK_STREAM) # привязываем сокет к общедоступному хосту и известному порту serversocket.bind ((socket.gethostname (), 80)) # стать серверным сокетом serversocket.listen (5) 

Следует отметить пару вещей: мы использовали socket.gethostname (), чтобы сокет будет видно внешнему миру. Если бы мы использовали s.bind (('localhost', 80)) или s.bind (('127.0.0.1 ', 80)) у нас остался бы «серверный» сокет, но тот, который был виден только внутри той же машины. s.bind ((', 80)) указывает, что сокет доступен по любому адресу, с которым встречается машина имеют.

Второе, на что следует обратить внимание: порты с низким номером обычно зарезервированы для «хорошо известных» сервисы (HTTP, SNMP и т. д.). Если вы играете, используйте хорошее большое число (4 цифры).

Наконец, аргумент listen сообщает библиотеке сокетов, что мы хотим, чтобы она поставьте в очередь до 5 запросов на соединение (нормальный максимум), прежде чем отказывать извне соединения.Если остальная часть кода написана правильно, этого должно быть достаточно.

Теперь, когда у нас есть «серверный» сокет, прослушивающий порт 80, мы можем ввести основной цикл веб-сервера:

, пока True: # принимать подключения извне (клиентский сокет, адрес) = serversocket.accept () # теперь что-нибудь сделаем с клиентским сокетом # в этом случае мы представим, что это многопоточный сервер ct = client_thread (клиентский сокет) ct.run () 

На самом деле существует 3 основных способа работы этого цикла - отправка поток для обработки клиентского сокета, создайте новый процесс для обработки clientocket или реструктурируйте это приложение, чтобы использовать неблокирующие сокеты, и мультиплексирование между нашим «серверным» сокетом и любыми активными клиентскими сокетами, использующими Выбрать.Подробнее об этом позже. Сейчас важно понять, это: это все «серверный» сокет. Он не отправляет никаких данных. Это не получать любые данные. Он просто производит «клиентские» сокеты. Каждый клиентский сокет создается в ответ на других «клиентских» сокетов, выполняющих соединение () с хост и порт, к которым мы привязаны. Как только мы создали этот клиентский сокет, мы вернитесь к прослушиванию для получения дополнительных подключений. Два «клиента» могут свободно общаться в чате. вверх - они используют какой-то динамически выделенный порт, который будет переработан, когда разговор заканчивается.

МПК

Если вам нужен быстрый IPC между двумя процессами на одной машине, вам следует изучить каналы или разделяемая память. Если вы решили использовать сокеты AF_INET, привяжите Сокет «server» на «localhost». На большинстве платформ это займет сократить несколько слоев сетевого кода и работать немного быстрее.

См. Также

Многопроцессорность интегрирует межплатформенный IPC в более высокий уровень API.

Использование розетки

Первое, что следует отметить, это то, что "клиентский" сокет веб-браузера и Интернет серверные «клиентские» сокеты такие же звери.То есть это «одноранговый» разговор. Или, другими словами, в качестве дизайнера вам придется решить, каковы правила этикета для разговора . Обычно Соединительный сокет начинает диалог, отправляя запрос, или возможно знак. Но это дизайнерское решение, а не розетки.

Теперь есть два набора глаголов, которые можно использовать для общения. Вы можете использовать отправить и recv, или вы можете превратить свой клиентский сокет в файлового зверя и используйте чтение и запись.Именно так Java представляет свои сокеты. Я не собираюсь здесь говорить об этом, но хочу предупредить, что вам нужно использовать заподлицо с розетками. Это буферизованные «файлы», и распространенной ошибкой является напишите что-нибудь, а затем прочтите, чтобы получить ответ. Без смыва там вы можете ждать ответа вечно, потому что запрос все еще может быть в ваш выходной буфер.

Теперь мы подошли к главному камню преткновения сокетов - работе send и recv. в сетевых буферах. Они не обязательно обрабатывают все передаваемые вами байты их (или ожидайте от них), потому что их основное внимание уделяется работе с сетью буферы.Как правило, они возвращаются, когда соответствующие сетевые буферы были заполнены (отправить) или опорожнены (recv). Затем они сообщают вам, сколько байтов они обработано. Это , ваша ответственность - позвонить им еще раз, пока ваше сообщение не будет полностью разобрались.

Когда recv возвращает 0 байтов, это означает, что другая сторона закрылась (или находится в процесс закрытия) соединение. Вы больше не получите данных о это соединение. Когда-либо. Возможно, вы сможете успешно отправить данные; Я поговорю подробнее об этом позже.

Протокол, такой как HTTP, использует сокет только для одной передачи. Клиент отправляет запрос, затем читает ответ. Это оно. Сокет отбрасывается. Это значит, что клиент может определить конец ответа, получив 0 байтов.

Но если вы планируете повторно использовать розетку для дальнейших передач, вам необходимо что нет EOT на розетке. Повторяю: если розетка send или recv возвращается после обработки 0 байтов, соединение было сломан.Если соединение , а не разорвано, вы можете подождать навсегда, потому что сокет , а не скажет вам, что больше нечего читать (пока). Если вы немного подумаете об этом, то поймете, что фундаментальная истина сокетов: сообщения должны иметь фиксированную длину (фу), или быть разделенными (пожать плечами), или указать их длину (намного лучше), или заканчиваться отключение соединения . Выбор полностью за вами, но некоторые способы правее других).

Если вы не хотите разрывать соединение, самым простым решением является фиксированный длина сообщения:

Класс
 mysocket: "" "только демонстрационный класс - закодирован для ясности, а не эффективности "" " def __ini 
.Сокет

- низкоуровневый сетевой интерфейс - документация Python 3.9.0

Исходный код: Lib / socket.py


Этот модуль обеспечивает доступ к интерфейсу сокета BSD . Он доступен на все современные системы Unix, Windows, MacOS и, возможно, дополнительные платформы.

Примечание

Некоторое поведение может зависеть от платформы, так как звонки выполняются в операционную API системных сокетов.

Интерфейс Python представляет собой прямую транслитерацию системы Unix. вызов и интерфейс библиотеки для сокетов в объектно-ориентированном стиле Python: Функция socket () возвращает объект сокета , методы которого реализуют различные системные вызовы сокетов.Типы параметров несколько выше, чем в интерфейсе C: как с операциями read () и write () на Python файлы, распределение буфера при операциях приема выполняется автоматически, а длина буфера неявно используется в операциях отправки.

См. Также

Модуль socketserver

Классы, упрощающие запись сетевых серверов.

Module ssl

Оболочка TLS / SSL для объектов сокета.

Семейства розеток

В зависимости от системы и вариантов сборки, различные семейства сокетов поддерживаются этим модулем.

Формат адреса, требуемый конкретным объектом сокета, автоматически выбрано на основе семейства адресов, указанного, когда объект сокета был создан. Адреса сокетов представлены следующим образом:

  • Адрес сокета AF_UNIX , привязанного к узлу файловой системы представлен в виде строки с использованием кодировки файловой системы и 'surrogateescape' обработчик ошибок (см. PEP 383 ).Адрес в Абстрактное пространство имен Linux возвращается как байтовый объект с начальный нулевой байт; обратите внимание, что сокеты в этом пространстве имен могут взаимодействовать с обычными сокетами файловой системы, поэтому программы, предназначенные для при запуске в Linux может потребоваться иметь дело с обоими типами адресов. Строка или байтовый объект может использоваться для любого типа адреса, когда передавая это как аргумент.

    Изменено в версии 3.3: Ранее предполагалось, что пути сокетов AF_UNIX используют UTF-8 кодирование.

  • Пара (хост, порт) используется для семейства адресов AF_INET , где host - это строка, представляющая либо имя хоста в Интернет-домене запись типа 'daring.cwi.nl' или IPv4-адрес, например '100.50.200.5' , и порт - целое число.

    • Для адресов IPv4 вместо хоста принимаются две специальные формы адрес: '' представляет INADDR_ANY , который используется для привязки ко всем интерфейсов, а строка '' представляет ИНАДДР_БРОАДКАСТ .Такое поведение несовместимо с IPv6, поэтому вы можете захотеть избежать этого, если намерены поддерживать IPv6 с помощью своего Программы Python.

  • Для семейства адресов AF_INET6 , четыре кортежа (хост, порт, flowinfo, scope_id) , где flowinfo и scope_id представляют sin6_flowinfo и sin6_scope_id членов в struct sockaddr_in6 в C. Для socket методы модуля, flowinfo и scope_id могут быть опущены только для Обратная совместимость.Обратите внимание, однако, что пропуск scope_id может вызвать проблемы. в манипулировании адресами IPv6 с заданной областью.

    Изменено в версии 3.7: Для многоадресных адресов (с scope_id значимым) адрес может не содержать % scope_id (или id зоны ) часть. Эта информация является излишней и может безопасно опустить (рекомендуется).

  • AF_NETLINK сокеты представлены парами (pid, groups) .

  • Поддержка TIPC только для Linux доступна с использованием AF_TIPC адрес семьи.TIPC - это открытый сетевой протокол, не основанный на IP, разработанный для использования в кластерных компьютерных средах. Адреса представлены кортеж, а поля зависят от типа адреса. Общая форма кортежа (addr_type, v1, v2, v3 [, scope]) , где:

    • addr_type является одним из TIPC_ADDR_NAMESEQ , TIPC_ADDR_NAME , или TIPC_ADDR_ID .

    • область действия является одним из TIPC_ZONE_SCOPE , TIPC_CLUSTER_SCOPE и ТИПС_НОД_СКОПЕ .

    • Если addr_type - это TIPC_ADDR_NAME , то v1 - это тип сервера, v2 - это идентификатор порта, а v3 должно быть 0.

      Если addr_type - TIPC_ADDR_NAMESEQ , тогда v1 - это тип сервера, v2 - это нижний номер порта, а v3 - это верхний номер порта.

      Если addr_type - это TIPC_ADDR_ID , то v1 - это узел, v2 - это ссылка, а v3 должно быть установлено на 0.

  • Кортеж (интерфейс,) используется для семейства адресов AF_CAN , где interface - строка, представляющая имя сетевого интерфейса, например 'can0' . Имя сетевого интерфейса '' может использоваться для приема пакетов. со всех сетевых интерфейсов этого семейства.

    • Протокол CAN_ISOTP требует кортежа (interface, rx_addr, tx_addr) где оба дополнительных параметра представляют собой длинное целое число без знака, которое представляет собой Идентификатор CAN (стандартный или расширенный).

    • Протокол CAN_J1939 требует кортежа (интерфейс, имя, pgn, адрес) где дополнительные параметры - это 64-битное целое число без знака, представляющее Имя ЭБУ, 32-битное целое число без знака, представляющее номер группы параметров (PGN) и 8-битное целое число, представляющее адрес.

  • Строка или кортеж (id, unit) используется для SYSPROTO_CONTROL протокол семейства PF_SYSTEM .Строка - это имя управление ядром с использованием динамически назначаемого идентификатора. Кортеж можно использовать, если ID и номер блока управления ядром известны, или если зарегистрированный идентификатор используемый.

  • AF_BLUETOOTH поддерживает следующие протоколы и адреса форматы:

    • BTPROTO_L2CAP принимает (bdaddr, psm) , где bdaddr - адрес Bluetooth в виде строки, а psm - целое число.

    • BTPROTO_RFCOMM принимает (bdaddr, канал) , где bdaddr - это адрес Bluetooth в виде строки, а канал , - целое число.

    • BTPROTO_HCI принимает (устройство_

.HOWTO по программированию сокетов

- документация Python 3.6.12

Автор

Гордон Макмиллан

Аннотация

Розетки используются почти везде, но являются одними из самых неправильно понятые технологии вокруг. Это обзор розеток на 10 000 футов. На самом деле это не учебник - вам еще нужно поработать, чтобы что-то получить оперативный. Он не затрагивает тонкости (а их очень много), но Я надеюсь, что это даст вам достаточно знаний, чтобы начать их прилично использовать.

Розетки

Я буду говорить только о сокетах INET (то есть IPv4), но они составляют не менее 99% используемые розетки. И я буду говорить только о сокетах STREAM (т. Е. TCP) - если только вы знать, что вы делаете (в этом случае этот HOWTO не для вас!), вы получите лучшее поведение и производительность от сокета STREAM, чем что-либо еще. Я буду попытаться раскрыть тайну того, что такое сокет, а также дать несколько советов о том, как работа с блокирующими и неблокирующими розетками.Но я начну с разговора о блокировка розеток. Вам нужно знать, как они работают, прежде чем начинать неблокирующие розетки.

Отчасти проблема с пониманием этих вещей состоит в том, что «сокет» может означать количество неуловимо разных вещей, в зависимости от контекста. Итак, сначала давайте сделаем различие между «клиентским» сокетом - конечной точкой разговора и «Серверная» розетка, которая больше похожа на операторский коммутатор. Клиент приложение (например, ваш браузер) использует исключительно «клиентские» сокеты; то веб-сервер, с которым он разговаривает, использует как «серверные», так и «клиентские» сокеты.

История

Из различных форм МПК , розетки, безусловно, самые популярные. На любой платформе есть вероятно, будут другие формы IPC, которые быстрее, но для кроссплатформенное общение, сокеты - это почти единственная игра в городе.

Они были изобретены в Беркли как часть разновидности BSD Unix. Они распространяются как лесной пожар с Интернетом. Не зря - комбинация розеток. с INET делает разговор с произвольными машинами по всему миру невероятно простым (по крайней мере, по сравнению с другими схемами).

Создание сокета

Грубо говоря, когда вы нажимали на ссылку, которая привела вас на эту страницу, ваш браузер сделал что-то вроде следующего:

 # создать INET, STREAMing сокет s = socket.socket (socket.AF_INET, socket.SOCK_STREAM) # теперь подключаемся к веб-серверу через порт 80 - обычный http порт s.connect (("www.python.org", 80)) 

Когда подключение завершается, сокет s может использоваться для отправки в запросе текста страницы.Тот же сокет будет читать ответить, а затем быть уничтоженным. Правильно, уничтожено. Клиентские сокеты обычно используются только для одного обмена (или небольшого набора последовательных обмены).

То, что происходит на веб-сервере, немного сложнее. Во-первых, веб-сервер создает «серверный сокет»:

 # создать INET, STREAMing сокет serversocket = socket.socket (socket.AF_INET, socket.SOCK_STREAM) # привязываем сокет к общедоступному хосту и известному порту serversocket.bind ((socket.gethostname (), 80)) # стать серверным сокетом серверный сокет.слушать (5) 

Следует отметить пару моментов: мы использовали socket.gethostname () , чтобы сокет будет видно внешнему миру. Если бы мы использовали s.bind (('localhost', 80)) или s.bind (('127.0.0.1', 80)) у нас все равно будет сокет «сервер», но тот, который был виден только внутри той же машины. s.bind (('', 80)) указывает, что сокет доступен по любому адресу, с которым встречается машина имеют.

Второе замечание: порты с небольшим номером обычно зарезервированы для «хорошо известных» сервисы (HTTP, SNMP и т. д.).Если вы играете, используйте хорошее большое число (4 цифры).

Наконец, аргумент listen сообщает библиотеке сокетов, что мы хотим, чтобы поставьте в очередь до 5 запросов на соединение (нормальный максимум), прежде чем отказывать извне соединения. Если остальная часть кода написана правильно, этого должно быть достаточно.

Теперь, когда у нас есть «серверный» сокет, прослушивающий порт 80, мы можем ввести основной цикл веб-сервера:

, пока True: # принимать подключения извне (клиентский сокет, адрес) = серверный сокет.принять () # теперь что-нибудь сделаем с клиентским сокетом # в этом случае мы представим, что это многопоточный сервер ct = client_thread (клиентский сокет) ct.run () 

На самом деле существует 3 основных способа работы этого цикла - отправка поток для обработки clientocket , создайте новый процесс для обработки clientocket , или реструктурируйте это приложение для использования неблокирующих сокетов, и мультиплексирование между нашим «серверным» сокетом и любым активным клиентским сокетом с использованием выберите .Подробнее об этом позже. Сейчас важно понять, это: это все «серверный» сокет. Он не отправляет никаких данных. Это не получать любые данные. Он просто производит «клиентские» сокеты. Каждому клиентскому сокету соответствует создается в ответ на то, что какой-то другой «клиентский» сокет выполняет соединение connect () с хост и порт, к которым мы привязаны. Как только мы создали этот клиентский сокет , мы вернитесь к прослушиванию для получения дополнительных подключений. Два «клиента» могут свободно общаться в чате. вверх - они используют какой-то динамически выделенный порт, который будет переработан, когда разговор заканчивается.

МПК

Если вам нужен быстрый IPC между двумя процессами на одной машине, вам следует изучить каналы или разделяемая память. Если вы решили использовать сокеты AF_INET, привяжите Сокет «server» на «localhost» . На большинстве платформ это займет сократить несколько слоев сетевого кода и работать немного быстрее.

См. Также

Многопроцессорная модель интегрирует межплатформенные IPC на более высокий уровень API.

Использование розетки

Первое, на что следует обратить внимание, это то, что «клиентский» сокет веб-браузера и Интернет серверные «клиентские» сокеты такие же звери.То есть это «одноранговый» разговор. Или, другими словами, в качестве дизайнера вам придется решить, каковы правила этикета для разговора . Обычно connect ing socket начинает диалог, отправляя запрос, или возможно знак. Но это дизайнерское решение, а не розетки.

Теперь есть два набора глаголов, которые можно использовать для общения. Вы можете использовать отправить и recv , или вы можете превратить свой клиентский сокет в файлового зверя и используйте для чтения и для записи .Именно так Java представляет свои сокеты. Я не собираюсь здесь говорить об этом, но хочу предупредить, что вам нужно использовать заподлицо на розетки. Это буферизованные «файлы», и распространенной ошибкой является напишите что-нибудь, а затем прочтите для ответа. Без промывки дюймов там вы можете ждать ответа вечно, потому что запрос все еще может быть в ваш выходной буфер.

Теперь мы подошли к главному камню преткновения розеток - send и recv работают. в сетевых буферах.Они не обязательно обрабатывают все передаваемые вами байты их (или ожидайте от них), потому что их основное внимание уделяется работе с сетью буферы. Как правило, они возвращаются, когда соответствующие сетевые буферы были заполнены ( отправить ) или опустошены ( recv ). Затем они сообщают вам, сколько байтов они обработано. - это ваша ответственность - позвонить им еще раз, пока ваше сообщение не будет полностью разобрались.

Когда recv возвращает 0 байтов, это означает, что другая сторона закрылась (или находится в процесс закрытия) соединение.Вы больше не получите данных о это соединение. Когда-либо. Возможно, вы сможете успешно отправить данные; Я поговорю подробнее об этом позже.

Протокол, подобный HTTP, использует сокет только для одной передачи. Клиент отправляет запрос, затем читает ответ. Это оно. Сокет отбрасывается. Это значит, что клиент может определить конец ответа, получив 0 байтов.

Но если вы планируете повторно использовать розетку для дальнейших передач, вам необходимо что нет EOT на розетке. Повторюсь: если розетка отправить или recv возвращается после обработки 0 байтов, соединение было сломан. Если соединение , а не разорвано, вы можете подождать recv навсегда, потому что сокет , а не скажет вам, что больше нечего читать (пока). Если вы немного подумаете об этом, то поймете, что фундаментальная истина сокетов: сообщения должны иметь фиксированную длину (фу), или быть

.

Смотрите также